

Anonymous Communication IV:
Tor and traffic analysis
Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

We’re going to finish talking about Tor, discuss Diffie-
Hellman key exchange, TLS, and do some hands on
with mitmproxy

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

2

Small mention of interesting things
● Google offered former Stasi headquarters for its

campus in the Licthenberg district in Berlin

recall from last time that DNS leaks information about
your browsing.

https://www.berliner-zeitung.de/berlin/google-sucht-campus-frueheres-stasi-quartier-als-moeglicher-standort-31519886?originalReferrer=
https://www.berliner-zeitung.de/berlin/google-sucht-campus-frueheres-stasi-quartier-als-moeglicher-standort-31519886?originalReferrer=

CC-SA License by David Sidi

Tor is an onion routing system
● Example: simplified, slightly out-

of-date Tor (link)
● Distributed TCP overlay network
● Sets up a “virtual circuit” as a

cascade of three onion relays
(OR) from the initial client onion
proxy (OP)

● guard (from “helper nodes”),
relay, and exit nodes
– each node only knows its

immediate predecessor and
successor

 each time a user creates a circuit, there is a small
chance that the circuit will be compromised.
However, most users create a large number of Tor
circuits, so with the original path selection algorithm,
these small chances would build up into a potentially
large chance that at least one of their circuits will be
compromised.

For users who have good guard nodes, the situation is
much better, and for users with bad guard nodes the
situation is not much worse than before.

CC-SA License by David Sidi

● originally, onion routing systems sent an initial onion
message that was “just layers” to set up the circuit;
Tor does it in stages (“telescoping”)

● Next hop in the circuit is determined by unwrapping
an “extend” relay cell with a symmetric key, which
causes the OR to send its own “create” control cell

● walk through diagram

 30

Excursus on TLS

credit: Vitaly Shmatikov

CC-SA License by David Sidi

OP picks the route
● First picks the exit node E such that E’s exit policy

includes at least one pending stream that needs a
circuit

● Choose N distinct nodes (default is three), with
some order

● Open a connection to the first (guard) node,
negotiate session keys

● extend the circuit incrementally over the remaining
N-1 nodes

CC-SA License by David Sidi

Tor uses PKC to protect negotiation of
a session key

● One hop at a time over an encrypted and authenticated
channel
– TLS: use identity keys to sign certs, router descriptors

● Use public-key cryptography (PKC) over this channel to
set up an ephemeral session key
– PKC is RSA (legacy) or Curve25519: use short-term onion

keys
– symmetric is AES, set up with DHE (legacy) or ECDHE

● Once ephemeral keys are set up OP layers them, and
ORs unwrap them

CC-SA License by David Sidi

CC-SA License by David Sidi

Discussion
● We have a public key for the guard. What

reason did I give to not just use PKC to encrypt
communications?

● Why encrypt the first half of the DH
handshake?

CC-SA License by David Sidi

Session keys are negotiated using
Diffie-Hellman Key Exchange

● First published in 1976; still around
● Alice and Bob want to share a secret key for

use in a symmetric cipher. Every piece of
information that they exchange is observed by
their adversary Eve. How is it possible for Alice
and Bob to agree on a key without making it
available to Eve?

CC-SA License by David Sidi

Diffie-Hellman
Publicly choose:
● a safe large prime p (e.g. Tor docs use rfc2409 section 6.2. But see Logjam)
● g, a primitive root mod p, with 2 <= g <= p-2

Secretly generate:
● Alice and Bob randomly choose secret integers 1 <= x, y <= p-2 respectively

KB := Ay (mod p)
 A := gx (mod p)

B := gy (mod p)

K
A
 := Bx (mod p)

K
A
 = (gy)x = (gx)y = K

B
 is the key

CC-SA License by David Sidi

Diffie-Hellman

x = loggA (mod p)
y = loggB (mod p)

Diffie-Hellman

x = loggA (mod p)
y = loggB (mod p)

Discrete Log Problem is in NP

Diffie Hellman Problem is no harder than DL problem (do you
see why not?); there is no proof of the converse

Question

● Ian Goldberg remarked that a good way to fight
mass surveillance by a global passive
adversary with minimum fuss would be to “do a
quick Diffie-Hellman” by default when setting up
otherwise unprotected connections. He notes
that this won’t help against an active attack.
Can you guess what he means by an active
attack?

CC-SA License by David Sidi

MiTM Diffie-Hellman

A := gx (mod p)

E := gz (mod p)

KEB := Ey (mod p)

K
EA

 := Ex (mod p)

Publicly choose:
a secure large prime p
g, a primitive root mod p, with 2 <= g <= p-2

Secretly generate:
● Alice and Bob choose secret integers 0 <= x, y <= p-2 respectively
● Eve picks her own secret integer, z

E := gz (mod p)

B := gy (mod p)

CC-SA License by David Sidi

MiTM Diffie-Hellman

A := gx (mod p)

E := gz (mod p)

KEB := Ey (mod p)

K
EA

 := Ex (mod p)

Publicly choose:
a secure large prime p
g, a primitive root mod p, with 2 <= g <= p-2

Secretly generate:
● Alice and Bob choose secret integers 0 <= x, y <= p-2 respectively
● Eve picks her own secret integer, z

E := gz (mod p)

B := gy (mod p)

K
EA

 := gxz (mod p)
K

EB
 := gyz (mod p)

CC-SA License by David Sidi

Tor protocol, cont’d
● once session keys are agreed upon with DH, encrypt for the exit node, then encrypt the

result for the relay node, and finally encrypt the result for the guard node
● send the layered result to the guard node
● guard node decrypts, gets the next hop and sends it on, then the middle key decrypts, ...
● on way back, each node uses the session key agreed on with the client OP, and passes

to its neighbor in the circuit

CC-SA License by David Sidi

Tor strengths and weaknesses
● Strengths

– faster than mixnets

– perfect forward secrecy

– easy to run nodes, easy to use as a client: adds to security

– bridges, pluggable transports for censorship circumvention

– sandboxing

● Weaknesses
– traffic analysis by a pervasive passive adversary

– end-to-end timing attacks

– content is revealed to exit node

– blockable exit nodes

CC-SA License by David Sidi

Who runs exit nodes?
● Universities (as of Oct 2017) (link)

– MIT+, Michigan, CMU, UNC, Karlsruhrer IT,
Stanford, Clarkson, U. Washington, Utah+, Caltech,
RIT+, Bowdoin, Northeastern+, Princeton

● Bad people too! (Why might they do that?)
● Not Arizona :-(

– yet :-)

CC-SA License by David Sidi

Who runs hidden services?
● Propublica, Duckduckgo, Facebook, Scihub, Riseup,

Protonmail, Debian, Whonix, The Intercept, Wikileaks,
Securedrops for The Freedom of the Press Foundation
, The Guardian, The Associated Press, NY TImes, USA
Today, Washington Post, etc., TORCH (these are all
onion links)

● A bunch of illegal stuff
● Hidden services are easy to set up (demo)

– even inside firewalled networks

CC-SA License by David Sidi

Fun with mitmproxy (demo)

CC-SA License by David Sidi

transparent vs. nontransparent proxying

nontransparent, remote proxy case

what is the local proxy case? Let’s set up local
nontransparent proxying on ourselves. (1) install
conda, pip, and python 3.x if you don’t have these
already (2) create and activate a new environment
called “mitm_sandbox” (3) install requisites for
mitmproxy (4) install mitmproxy (5) set up proxy
settings on your browser (6) run mitmproxy (8)
access httpS://webauth.arizona.edu

CC-SA License by David Sidi

transparent case (note: -T): what does it mean to
say traffic is “directed at the network layer” (what in
TCP/IP is called the internet layer)?

mentioned in the docs without comment: “arp spoofing”
What is arp (from last time)? So arp spoofing

(AKA arp cache poisoning)?

Simple defense, whipped up in an hour or so:
antipineapple

CC-SA License by David Sidi

task 1: set up a nontransparent local proxy, and use it to
- figure out who the altnames are on the UA

server certificate by visiting arizona.edu (don’t need mitmproxy for this, but do it
as an exercise)

- censor nytimes.com
- intercept and modify the information submitted

to the wiki’s registration page
- capture a flow from visiting nytimes.com and

determine how many unique domains are
contacted

task 2: write a script to change the title of all pages to ‘Mrs. Roberts is l337,’ and turns all
images upside down (the “upside-down-ternet.” See: mitmdump, mogrify). Try it on your
local proxy. Now set up two VMs (can clone the one you have) and have one proxy the
traffic of the other, with the proxy running mitmproxy in transparent mode.

set up:

install VM (optional, but recommended for windows)

install conda

install mitmproxy (pip)

	Slide 1
	Slide 2
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

