

Communications Privacy I: RSA
Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

two topics from cryptography came up last time:
Kerckhoff’s Law and Diffie-Hellman. We will talk
about those to set the stage for our main focus today,
which is RSA. It’s going to be a little bit short, to allow
us to do some mitmproxy work, so we’ll return to
RSA next time.

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

2

Small mention of interesting things
● Schedule adjustment
● Server assignment 4
● Take a hard look at your final project. If you are

not making steady progress, you must come
speak with me

We are going to skip the Boneh article for next time,
and move to a discussion of TLS.

Now that we have finished the Tor material, we are
ready for assignment 4: it will be due in one week.

CC-SA License by David Sidi

Cryptography is useful when it is
difficult to secure a channel

● Confidentiality in FF voice communication
requires that no unwanted third party is
listening in

● However hard that is, phone communication
presupposes it too. In addition, it requires that
the call isn’t intercepted while in transit

● Interception: Face to face < Copper wire <
Radio link < Optical link (POTL 11)

CC-SA License by David Sidi

Different cryptographic systems
have different strengths

● “A cryptosystem is considered secure when an
opponent cannot break it under reasonable
circumstances, in a reasonable amount of time,
at a reasonable cost. The term “reasonable” is
perforce vague.” (POTL 26)

CC-SA License by David Sidi

“Reasonable Circumstances”
● Ciphertext only
● Known plaintext: attacker can observe a plaintext and its

encryption
● Chosen plaintext: attacker picks the plaintext to be

encrypted
● Chosen ciphertext: attacker picks the ciphertext to be

decrypted
– non-malleability: the attacker cannot change the ciphertext so

that the correspondnig plaintext is changed in a controlled
way

CC-SA License by David Sidi

“Reasonable Time”
● “Workfactor:” number of operations required to

break a cryptographic system
● What ‘operations’ means depends: they may

not be elementary computer instructions
– For example, if searching space of keys: operations

are encryptions, which could be several hundred
instructions

CC-SA License by David Sidi

Workfactors and their significance
● Assume perfectly parallel problems
● 230: trivial (minutes) by one computer at 1 GhZ
● 260: 11 to 12 days (with 220 processors in

parallel at 220 instructions per second)
● 290: 30 years (with 230 processors in parallel at

230 instructions per second)
● 2120: 30,000 years (with 260 processors in

parallel at 260 instructions per second)

CC-SA License by David Sidi

Estimating workfactor significance:
what could go wrong?

● RSA challenge: in 1977, it was estimated that the time
taken to factor the 426 bit number would be 4 × 1016
years

● n =
11438162575788886766923577997614661201021829
67212423625625618429357069352457338978305971
23563958705058989075147599290026879543541

● This is from Martin Gardner’s Scientific American
article, and came to be known as RSA-129

● Solved in 1994 (~ 17 years later)

CC-SA License by David Sidi

“Reasonable time” is relative
● How long is too long for decryption?

– The Venona messages were studied for nearly 40 years
in hopes that they would reveal the identities of spies
who had been young men in the 1930s and who might
have been the senior intelligence officers of the 1970s

● Sometimes keys are ephemeral, so are only helpful
for a small window of messages going forward
– What’s an example of an ephemeral key from Tor?

CC-SA License by David Sidi

“Reasonable cost”

● Example: NSA’s Utah Data Center
● The planned structure provides 1 to

1.5 million square feet (90,000–
140,000 m2), with 100,000 square
feet (9,000 m2) of data center
space and more than 900,000
square feet (84,000 m2) of
technical support and
administrative space. It is projected
to cost $1.5–2 billion. A report
suggested that it will cost another
$2 billion for hardware, software,
and maintenance.

CC-SA License by David Sidi

● “cryptography can best be thought of as a
mechanism for extending the confidentiality and
authenticity of one piece of information (the
key) to another (the message).” (POTL 34)

CC-SA License by David Sidi

Key compromise means different
things depending on the key’s use

● Authentication keys can be revoked, and no
authentications will still go through with those
keys

● Keys used for privacy can also be revoked, but
all messages ever sent with a key must be
regarded as compromised

● A revoked key can be used in the future for old
encryptions, but there is no corresponding
notion of “old authentications”

CC-SA License by David Sidi

“Cryptography is the only technique capable of
providing security to messages transmitted over
channels entirely out of the control of either the
sender or the receiver.” (POTL 35)

CC-SA License by David Sidi

Public Key Cryptography
● Key idea: Encryption key is public, decryption

key is private
● Question: The private key is sometimes used

by the sender, and the public one by the
recipient. When?

CC-SA License by David Sidi

The Rivest-Shamir-Adleman (RSA) Cryptosystem

We’re thinking about residue class rings here, as in
Z/nZ. There, elements like a,b,n above are residue
classes (quickly on board. NB: representation by
smallest non-negative member is common).

Division works in rings like it does in the integers:
loosely, a divides n if a can be multiplied by some b
to get n.

When an element n of a residue class divides 1 (mod
m), we call it `invertible.’ (i.e., when ax ≡ 1 (mod m))

In general in a ring there is a question about which
elements are invertible. In the unit group for a ring,
that question evaporates: all elements are invertible.
We’ll work in the unit group for Z/mZ (that is, integers
modulo m).

CC-SA License by David Sidi

RSA requires a modulus that is the
product of two primes

● randomly choose a large integer n = pq, called the
RSA modulus, with p and q prime

● take the group (/n)*ℤ ℤ
● p and q of almost equal length
● There are factoring algorithms that do better with p

or q of a special form, but there are only a few
instances of that form. With a cryptographic
pseudo-random number generator (CPRNG), the
probability of getting one is negligible

Here we’re picking a modulus that has two primes as
factors, and using it to form the unit group from the
ring Z/nZ. (NB: n is the key length)

In general it is hard to factor a composite positive
integer that is the product of two primes. Choosing p
and q to be almost of equal length makes it harder,
as do a few other choices.

The infeasibility of factoring n is important here, since
with p and q you can get an important value,
φ(n)=(p-1)(q-1), which can be used to compute the
secret key from the public one.

CC-SA License by David Sidi

RSA requires an encryption exponent

● φ(n) = (p - 1)(q - 1) is Euler’s phi (this is the
order of (/n)*)ℤ ℤ

● choose an encryption exponent e such that
– 1 < e < φ(n)

– e coprime with φ(n): gcd(e, φ(n)) = 1

When you pick n in the way we did as the modulus,
there is a relationship between the prime factors of
the residue class ring’s modulus and the number of
elements in the ring’s unit group. That relationship is
given by Euler’s phi.

The restriction on choice of e here ensures that an
encryption exponent e is chosen so that things
powered by it are in the unit group: e is less than
φ(n), and it’s coprime with φ(n) (so invertible)

(n,e) becomes the public key.

CC-SA License by David Sidi

RSA requires a decryption exponent

● compute a decryption exponent d
● 1 <= d <= φ(n)
● ed ≡ 1 (mod φ(n))

– found with extended euclidean algorithm, since
gcd(e, φ(n)) = 1

to get d, we need the inverse of e in the group formed
from the units of the previous group. There is a
general way to get inverses when the thing to invert
is coprime with the modulus, called the extended
euclidean algorithm. Note: working in the unit group
makes this work.

d becomes the private key

NB: if you know the value of φ(n), then you can
compute the solution to ed ≡1 (mod φ(n)) efficiently
using the extended Euclidean algorithm.

CC-SA License by David Sidi

RSA encrypts messages encoded
as integers

● message is an integer m with 0 <= m < n
– can encode m1m2 m⋯ k as such an m; a block

version of RSA

● encryption of a message m is me (mod n);
decryption is (me)d (mod n)

● we need to show that (me)d = m

CC-SA License by David Sidi

RSA relies on the difficulty of prime
factorization

● choose a large number
n = pq, with p,q prime

● φ(n) is Euler’s phi
● choose exponents e,d

such that
– 1 <= e,d <= φ(n)

– e coprime with φ(n)

– ed ≡ 1 (mod φ(n))

● message is an integer
m with 0 < m < n

● encryption of m is

 me (mod n)
● decryption is

 (me)d (mod n)

CC-SA License by David Sidi

RSA is a cryptosystem
● To show that RSA is a cryptosystem, we need

to show that the encryption operation is
invertible

CC-SA License by David Sidi

RSA is a cryptosystem
● ed ≡ 1 (mod φ(n)) implies ed = 1 + ℓφ(n)
● (me)d = (m1+ℓφ(n)) = m(mℓφ(n)) = m(mℓ(p-1)(q-1)) = m(m(p-1))ℓ(q-1)

● If p | m, (me)d ≡ m (mod p) is trivial. (why?)
● Otherwise, by Fermat’s little theorem, m(p-1) ≡ 1 (mod p), so

m(m(p-1))ℓ(q-1) ≡ m (mod p)
● The case is exactly similar for q, so we have

(me)d ≡ m (mod pq)
● 0 < m < pq, so it is established that (me)d = m

CC-SA License by David Sidi

● The core idea of RSA is from algebra:
exponentiation by an element coprime with the
unit group order is an invertible automorphism
– Klaus Lux occasionally teaches a cryptography

course here; take it to learn more

CC-SA License by David Sidi

RSA is a partially-homomorphic
system

● What is homomorphic encryption?
● (gh)e = gehe , given that we’re in an abelian

group, so RSA can be used for partially
homomorphic encryption

Unit group is an abelian group.

CC-SA License by David Sidi

Fun with mitmproxy (demo)

CC-SA License by David Sidi

transparent vs. nontransparent proxying

nontransparent, remote proxy case

This is a remote proxy. What is the local proxy case?
Let’s set up local nontransparent proxying on
ourselves. (1) install conda, pip, and python 3.x if you
don’t have these already (2) create and activate a
new environment called “mitm_sandbox” (3) install
requisites for mitmproxy (4) install mitmproxy (5) set
up proxy settings on your browser (6) run mitmproxy
(8) access httpS://webauth.arizona.edu

CC-SA License by David Sidi

transparent case (note: -T): what does it mean to
say traffic is “directed at the network layer?”

mentioned in the docs without comment: “arp spoofing”
What is arp (from last time)? So arp spoofing

(AKA arp cache poisoning)?

Simple defense, whipped up in an hour or so:
antipineapple

CC-SA License by David Sidi

task 1: set up a nontransparent local proxy, and use it to
- figure out who the altnames are on the UA

server certificate by visiting arizona.edu (don’t need mitmproxy for this, but do it
as an exercise)

- censor nytimes.com
- intercept and modify the information submitted

to the wiki’s registration page
- capture a flow from visiting nytimes.com and

determine how many unique domains are
contacted

task 2: write a script to change the title of all pages to ‘Mrs. Roberts is l337,’ and turns all
images upside down (the “upside-down-ternet.” See: mitmdump, mogrify). Try it on your
local proxy. Now set up two VMs (can clone the one you have) and have one proxy the
traffic of the other, with the proxy running mitmproxy in transparent mode.

set up:

install VM (optional, but recommended for windows)

install conda

install mitmproxy (pip)

CC-SA License by David Sidi

Done with that? Use stem to retrieve the full set of descriptors
from a running tor process.

Consider: ControlPort, authentication method, getting full
descriptor list (not just the ones being used), all in torrc

Using stem to connect to the Control port, then get the router
status entries from the network status documents. Print
whether the router is an exit, and its nickname and fingerprint.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

