
  

 

Communications Privacy I: RSA
Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

two topics from cryptography came up last time: 
Kerckhoff’s Law and Diffie-Hellman. We will talk 
about those to set the stage for our main focus today, 
which is RSA. It’s going to be a little bit short, to allow 
us to do some mitmproxy work, so we’ll return to 
RSA next time.
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Small mention of interesting things
● Schedule adjustment
● Server assignment 4
● Take a hard look at your final project. If you are 

not making steady progress, you must come 
speak with me

We are going to skip the Boneh article for next time, 
and move to a discussion of TLS.

Now that we have finished the Tor material, we are 
ready for assignment 4: it will be due in one week.
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Cryptography is useful when it is 
difficult to secure a channel

● Confidentiality in FF voice communication 
requires that no unwanted third party is 
listening in

● However hard that is, phone communication 
presupposes it too. In addition, it requires that 
the call isn’t intercepted while in transit

● Interception: Face to face < Copper wire < 
Radio link < Optical link (POTL 11)
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Different cryptographic systems 
have different strengths

● “A cryptosystem is considered secure when an 
opponent cannot break it under reasonable 
circumstances, in a reasonable amount of time, 
at a reasonable cost. The term “reasonable” is 
perforce vague.” (POTL 26)
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“Reasonable Circumstances”
● Ciphertext only
● Known plaintext: attacker can observe a plaintext and its 

encryption
● Chosen plaintext: attacker picks the plaintext to be 

encrypted
● Chosen ciphertext: attacker picks the ciphertext to be 

decrypted
– non-malleability: the attacker cannot change the ciphertext so 

that the correspondnig plaintext is changed in a controlled 
way
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“Reasonable Time”
● “Workfactor:” number of operations required to 

break a cryptographic system
● What ‘operations’ means depends: they may 

not be elementary computer instructions
– For example, if searching space of keys: operations 

are encryptions, which could be several hundred 
instructions
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Workfactors and their significance
● Assume perfectly parallel problems
● 230: trivial (minutes) by one computer at 1 GhZ
● 260: 11 to 12 days (with  220 processors in 

parallel at 220 instructions per second)
● 290: 30 years (with 230 processors in parallel at 

230 instructions per second)
● 2120: 30,000 years (with 260 processors in 

parallel at 260 instructions per second)
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Estimating workfactor significance: 
what could go wrong?

● RSA challenge: in 1977, it was estimated that the time 
taken to factor the 426 bit number would be 4 × 1016 
years

● n = 
11438162575788886766923577997614661201021829
67212423625625618429357069352457338978305971
23563958705058989075147599290026879543541

● This is from Martin Gardner’s  Scientific American 
article, and came to be known as RSA-129

● Solved in 1994 (~ 17 years later)
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“Reasonable time” is relative
● How long is too long for decryption?

– The Venona messages were studied for nearly 40 years 
in hopes that they would reveal the identities of spies 
who had been young men in the 1930s and who might 
have been the senior intelligence officers of the 1970s

● Sometimes keys are ephemeral, so are only helpful 
for a small window of messages going forward 
– What’s an example of an ephemeral key from Tor?
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“Reasonable cost”

● Example: NSA’s Utah Data Center
● The planned structure provides 1 to 

1.5 million square feet (90,000–
140,000 m2), with 100,000 square 
feet (9,000 m2) of data center 
space and more than 900,000 
square feet (84,000 m2) of 
technical support and 
administrative space. It is projected 
to cost $1.5–2 billion. A report 
suggested that it will cost another 
$2 billion for hardware, software, 
and maintenance. 
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● “cryptography can best be thought of as a 
mechanism for extending the confidentiality and 
authenticity of one piece of information (the 
key) to another (the message).” (POTL 34)
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Key compromise means different 
things depending on the key’s use

● Authentication keys can be revoked, and no 
authentications will still go through with those 
keys

● Keys used for privacy can also be revoked, but 
all messages ever sent with a key must be 
regarded as compromised

● A revoked key can be used in the future for old 
encryptions, but there is no corresponding 
notion of “old authentications”
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“Cryptography is the only technique capable of 
providing security to messages transmitted over 
channels entirely out of the control of either the 
sender or the receiver.” (POTL 35)
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Public Key Cryptography
● Key idea: Encryption key is public, decryption 

key is private
● Question: The private key is sometimes used 

by the sender, and the public one by the 
recipient. When?
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The Rivest-Shamir-Adleman (RSA) Cryptosystem

We’re thinking about residue class rings here, as in 
Z/nZ. There, elements like a,b,n above are residue 
classes (quickly on board. NB: representation by 
smallest non-negative member is common).

Division works in rings like it does in the integers: 
loosely, a divides n if a can be multiplied by some b 
to get n.

When an element n of a residue class divides 1 (mod 
m), we call it `invertible.’ (i.e., when ax ≡ 1 (mod m)) 

In general in a ring there is a question about which 
elements are invertible. In the unit group for a ring, 
that question evaporates: all elements are invertible. 
We’ll work in the unit group for Z/mZ (that is, integers 
modulo m).
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RSA requires a modulus that is the 
product of two primes

● randomly choose a large integer n = pq, called the 
RSA modulus, with p and q prime

● take the group ( /n )*ℤ ℤ
● p and q of almost equal length
● There are factoring algorithms that do better with p 

or q of a special form, but there are only a few 
instances of that form. With a cryptographic 
pseudo-random number generator (CPRNG), the 
probability of getting one is negligible

Here we’re picking a modulus that has two primes as 
factors, and using it to form the unit group from the 
ring Z/nZ. (NB: n is the key length)

In general it is hard to factor a composite positive 
integer that is the product of two primes. Choosing p 
and q to be almost of equal length makes it harder, 
as do a few other choices.

The infeasibility of factoring n is important here, since 
with p and q you can get an important value, 
φ(n)=(p-1)(q-1), which can be used to compute the 
secret key from the public one.
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RSA requires an encryption exponent 

● φ(n) = (p - 1)(q - 1) is Euler’s phi (this is the 
order of ( /n )*)ℤ ℤ

● choose an encryption exponent e such that
– 1 < e < φ(n)

– e coprime with φ(n): gcd(e, φ(n)) = 1

When you pick n in the way we did as the modulus, 
there is a relationship between the prime factors of 
the residue class ring’s modulus and the number of 
elements in the ring’s unit group. That relationship is 
given by Euler’s phi.

The restriction on choice of e here ensures that an 
encryption exponent e is chosen so that things 
powered by it are in the unit group: e is less than 
φ(n), and it’s coprime with φ(n) (so invertible)

(n,e) becomes the public key.
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RSA requires a decryption exponent

● compute a decryption exponent d
● 1 <= d <= φ(n)
● ed ≡ 1 (mod φ(n))

– found with extended euclidean algorithm, since 
gcd(e, φ(n)) = 1

to get d, we need the inverse of e in the group formed 
from the units of the previous group. There is a 
general way to get inverses when the thing to invert 
is coprime with the modulus, called the extended 
euclidean algorithm. Note: working in the unit group 
makes this work.

d becomes the private key

NB: if you know the value of φ(n), then you can 
compute the solution to ed ≡1 (mod φ(n)) efficiently 
using the extended Euclidean algorithm.
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RSA encrypts messages encoded 
as integers

● message is an integer m with 0 <= m < n
– can encode m1m2 m⋯ k as such an m; a block 

version of RSA

● encryption of a message m is me (mod n); 
decryption is (me)d (mod n)

● we need to show that (me)d = m
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RSA relies on the difficulty of prime 
factorization

● choose a large number 
n = pq, with p,q prime

●  φ(n) is Euler’s phi
● choose exponents e,d 

such that 
– 1 <= e,d <= φ(n)

– e coprime with φ(n)

– ed ≡ 1 (mod φ(n))

● message is an integer 
m with 0 < m < n

● encryption of m is 

  me (mod n)
● decryption is 

  (me)d (mod n)
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RSA is a cryptosystem
● To show that RSA is a cryptosystem, we need 

to show that the encryption operation is 
invertible
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RSA is a cryptosystem
● ed ≡ 1 (mod φ(n)) implies ed = 1 +  ℓφ(n)
● (me)d = (m1+ℓφ(n)) = m(mℓφ(n)) = m(mℓ(p-1)(q-1)) = m(m(p-1))ℓ(q-1) 

● If p | m, (me)d ≡ m (mod p) is trivial. (why?) 
● Otherwise, by Fermat’s little theorem, m(p-1) ≡ 1 (mod p), so 

m(m(p-1))ℓ(q-1) ≡ m (mod p) 
● The case is exactly similar for q, so we have

(me)d ≡ m (mod pq)
● 0 < m < pq, so it is established that (me)d = m
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● The core idea of RSA is from algebra: 
exponentiation by an element coprime with the 
unit group order is an invertible automorphism
– Klaus Lux occasionally teaches a cryptography 

course here; take it to learn more
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RSA is a partially-homomorphic 
system

● What is homomorphic encryption?
● (gh)e = gehe , given that we’re in an abelian 

group, so RSA can be used for partially 
homomorphic encryption

Unit group is an abelian group.
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Fun with mitmproxy (demo)
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transparent vs. nontransparent proxying

nontransparent, remote proxy case

This is a remote proxy. What is the local proxy case? 
Let’s set up local nontransparent proxying on 
ourselves. (1) install conda, pip, and python 3.x if you 
don’t have these already (2) create and activate a 
new environment called “mitm_sandbox” (3) install 
requisites for mitmproxy (4) install mitmproxy (5) set 
up proxy settings on your browser (6) run mitmproxy 
(8) access httpS://webauth.arizona.edu
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transparent case (note: -T): what does it mean to 
say traffic is “directed at the network layer?”

mentioned in the docs without comment: “arp spoofing”
What is arp (from last time)? So arp spoofing 

(AKA arp cache poisoning)?

Simple defense, whipped up in an hour or so: 
antipineapple
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task 1: set up a nontransparent local proxy, and use it to 
- figure out who the altnames are on the UA 

server certificate by visiting arizona.edu (don’t need mitmproxy for this, but do it 
as an exercise)

- censor nytimes.com
- intercept and modify the information submitted

to the wiki’s registration page
- capture a flow from visiting nytimes.com and 

determine how many unique domains are
contacted

task 2: write a script to change the title of all pages to ‘Mrs. Roberts is l337,’ and turns all 
images upside down (the “upside-down-ternet.” See: mitmdump, mogrify). Try it on your 
local proxy. Now set up two VMs (can clone the one you have) and have one proxy the 
traffic of the other, with the proxy running mitmproxy in transparent mode.

set up: 

install VM (optional, but recommended for windows)

install conda

install mitmproxy (pip)
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Done with that? Use stem to retrieve the full set of descriptors 
from a running tor process.

Consider: ControlPort, authentication method, getting full 
descriptor list (not just the ones being used), all in torrc

Using stem to connect to the Control port, then get the router 
status entries from the network status documents. Print 
whether the router is an exit, and its nickname and fingerprint.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

