Small mention of interesting things

» Schedule:

- Final server assignment deadline will be extended
to the 29t

- Final projects will be due the day of the final
« TCEs

I've moved the small mentions to before the title slide,
since it makes more sense this way.

Small mention of interesting things

sesar | KANYE WEST ACCIDENTALLY REVEALED
== HIS IPHONE PASSCODE

m T 1 PO ICE b T HE HLIRT FO S0

Small mention of interesting things

» Bodyguard FLARE home security camera (link.
Also, among the funniest videos I've seen)

» A depolarized monitor matched to polarizing
glasses (link)

ssssssssssssssssssssssssssssssssss
School of Information

IS

Layer 8+ Privacy: The Analog
Keyhole

Privacy Technology in Context
David Sidi (dsidi@email.arizona.edu)

@uele

Today we talk about what happens when there are
automated systems ready to interpret what is
available from the analog hole. In recent work we’ve
called this “the analog keyhole problem.”

https://www.buddyguard.io/
https://www.youtube.com/watch?v=1z71su02dlo
../../../../../../../Videos/Amazing%20Secret%20Monitor!%20(How%20To)-zL_HAmWQTgA.mp4

You can think of the analog keyhole problem as
industrialized shoulder surfing.

What is regular shoulder-surfing?

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

Google [one

Accounts

. - N Sign in
has more to offer when YOu sign in 1o your Googhe Account.

Sign in on the right oe e o nount for free.
amit@gmail.com
Gmail
M Chat with friends and never miss an important email. Password

What's the Fasword 'nid'mg tﬂ D df =ity

under these asterisk thavacters?

shoulder surfing is the reason that characters
are not shown as you type in your
password.

How effective is that? Let’s say for simplicity a
service requires passwords to be between 6
and 8 characters long, and can use any
upper or lowercase letter, any number, and
the symbols % and @. How many guesses
to exhaust the set of possible passwords?

Now suppose you see 7 character dots as a
person puts in their password. How many
guesses now? (consider 3T guess/s). Rate
limiting.

DARKLY is for only a limited threat
related to the AKP

» Suppose you own devices with perceptual
capabilities and want to be sure that the apps that
use those capabilities don’'t misbehave

» Darkly (@ 31:49 - 43:00)
e Trust includes

- device operating system
- the hardware of its perceptual sensors

 Trust does not include a third party application
running on your device

One version of the AKP involves ensuring
that applications that need access to
sensors do not have unlimited access.

If an app needs to look at you to see
what gesture you're doing to indicate
the video you want to watch, what’s to
stop it from also using OCR to check for
credit card numbers, or passwords?

Here nonthreats include the device OS
and its hardware. The worry is about
software Iinstalled on an otherwise
trusted device.

DARKLY focuses on sensors for video
processing (it is specific to OpenCV).

Opague References

» “the application will never have access to the raw pixels”

E F .
Parceptual data Opency L
e

A
I library
DﬂrH'I_f storage

— server €= ibcVM
A interposition | ===
PP library p— “—> T";T}Td c::.i I

User process Darkly process User

User's device

Here’s the architecture of DARKLY. It sits between
the vision library and the app, and prevents the
app from getting more vision data than it needs.
No raw pixels!

The triple arrows are standard OS user isolation,
which we’ll clarify in a second. Notice for now
that part of DARKLY runs on the app side, and
part on the OS side (inputs, OS, sensors are
trusted).

To block direct access to raw images, DARKLY
replaces OpenCV'’s pointers to pixels with
opaque references that cannot be dereferenced
by applications. Applications can still pass them
as arguments into OpenCYV functions, which
dereference them internally and access the
data.

Opague References

* “the application will never have access to the raw pixels”

- opague references

'n

Remote
storage

{l

ser

interposition
A

|lser process

User's device

opaque references

D ARKLY exploits the fact that the lower part of the address

space is typically reserved for the OS code, and therefore

all valid pointers must be greater than a certain value. For

example, in standard 32-bit Linux binaries, all valid stack

and heap addresses are higher than 0x804800. The values

of all opaque references are below this address. It only does
this for the pixel data inside the data structures; it leaves
metadata alone.

https://www.youtube.com/watch?v=iRE67z7Gw0A

Opague References

* “the application will never have access to the raw pixels”

- opague references
Perceptual data n

storage
/IntE rpo 5|t|{:n\

library

Ug}pﬁcﬁu/ Darkly process

lsar

User's device \
Local call, or forward to DARKLY?

For each call made by an application to an OpenCV
function, the interposition library must decide
whether to execute it within the application or forward
it to the trusted D ARKLY server running as a sepa-

rate “user” on the same device (only this server has
access to camera inputs).

Opague References

* “the application will never have access to the raw pixels”

o
Perceptual data n

Remote
J/
interposition | &=
App : [=
library Jp—
\

storage
User process Darkly process User

{l

User's device

any opaque references?

If there is at least one argument with an opaque
reference, executing the function requires access to
the image. The interposition library marshals the
local arguments and opaque references, and
forwards the call to D ARKLY for execution. If none of
the arguments contain an opaque reference, the
function does not access the image and the
interposition library simply calls the function in the
local OpenCV library.

Declassifiers for privacy
transformation

» “the application will never have access to the raw pixels”
- opaque references

—
Perceptual data B e
. - OpenCV
ﬂ . 2 / é\ Ilh'ﬂr'f Remaote
| ’ Darkly storage
server H/ ibc VM
A interposition | &=
PP library ‘::}::; oy Trusted oL,
GUI
User process Darkly proce User
User's device

declassifiers (e.g., sketching transform)

Sometimes an application can’t work only
by composing calls to OpenCV, and so
needs some kind of access to the visual
data itself. The answer DARKLY
provides here is to degrade the visual
data so that it is as minimal as possible
for the use needed by the application.

That’s an ad-hoc answer, notice.

Here you can see that this is a credit
card, but you can’t recover the number.

Sometimes an application can’t work only
by composing calls to OpenCV, and so
needs some kind of access to the visual
data itself. The answer DARKLY
provides here Is to degrade the visual
data so that it is as minimal as possible
for the use needed by the application.

That’s an ad-hoc answer, notice.

Here you can see that this is a credit
card, but you can’t recover the number.

Trusted GUI and Storage

* “the application will never have access to the raw pixels”

Remaote
storage

£l

lsar

mpmi:m
interposition
App "
library

User process

I

Darklyprocess

_ "

trusted display

There is a second layer of “field verifiability” as a
failsafe. The user is asked about the level of the
privacy transform, and can adjust it. This involves
use of a trusted display.

The trusted display actually serves a dual purpose:

(1) an application can use it to show images to which it

does not have direct access, and (2) it shows to the
user the privacy-transformed features and objects
released to the application by declassifiers. Why
might this be important?

Ibc for untrusted arbitrary
computation

* “the application will never have access to the raw pixels”

(mostly)
Perceptual data n

storage
interposition | ===
App . =
library p—

User process

Darkly process

User's device |
isolate untrusted code running on raw input

ibc is a DSL they’ve made to handle even the case in
which arbitrary untrusted computation has to be
performed on raw pixels (their example is eigenface
algorithm for face recognition). ibc programs cannot
access DARKLY ’s or OpenCV'’s internal state, and
can only read or write through a few D ARKLY
functions. That's a portability cost, but it at least
provides an avenue for such untrusted computation
on raw pixels.

DARKLY Is domain-specific

* Architecture is general in principle, but in practice lots of
OpenCV specific tinkering required

- “DARKLY exploits the fact that most OpenCV data
structures for images and video include a separate pointer
to the actual pixel data. For example, Iplimage’s data
pointer is stored in the imageData field; CvMat’'s data
pointer is in the data field. For these objects, DARKLY
creates a copy of the data structure, fills the meta-data, but
puts the opaque reference in place of the data pointer.
Existing applications can thus run without any modifications
as long as they do not dereference the pointer to the
pixels”

Its hard to make privacy transforms
principled

* Not always clear what a system needs to perform its work, and
manual intervention is problematic

- “The sketch of an image is intended to convey its high-level
features while hiding more specific privacy-sensitive details. A
loose analogy is publicly releasing statistical aggregates of a
dataset while withholding individual records.”

- May reduce performance in unexpected ways
- May reduce privacy in unexpected ways

* Not always intuitive what privacy protections are guaranteed
by different transformations of visual input: sketching transform

« Example: Gaussian blur m
gy -

What makes a transform of visual data

privacy preserving, or not? Is a
sketching transform like DARKLY uses a

good one in all cases? How trustworthy
are our intuitions about this? (Hint: not
very trustworthy---see Gaussian blur).

DARKLY supposes a trusted platform---
hardware, and OS. How do we get there
with the proliferation of perceptually-
capable devices? DARKLY thinks about
devices that the user controls, but what
about devices that the user wants to be
able to judge trustworthy that are not
under her control? There are going to be
a lot of those, given the widespread
availability of sophisticated vision
functionality as a service.

Explicit Content

That

hel

's hard to handle, but a clear first
step is to take an infrastructural
approach: provide privacy infrastructure
that sits between these perceptually-
capable devices and their subjects, and

NS mediate their interactions.

Here’s an example of that kind of

arc

nitecture that I've worked on.

(Explain this, the harder case).

The easier case which we're interested
In, inspired by DARKLY.

=
myMCS Smart Buildings ™

Sensor network
OCCUPANCY USER SATISFACTION

Big data platform
OTHER INPUTS
canuimaws

Y| PERFORMANCE BENCHMARKS.

PRESENCE/OCCUPANCY FEEDBACK POLLING

TRAFFC FLOW
I ooorconnee
[(] rrouene

POSITIONING
n POSTIONNG

ADVANCED ANALYTICS
ENERGY METERING WELL-BEING DATA VISUALIZATION
ELECTRCTY J TEWPERATURE USER OUTPUT

WPROVEMENT INTIATIVES

EN0USERAPPS
Wosks

I = o,
[wen HuMDTY
Bl v Nosse

image credit: mcssolutions.com

IRR [TIPPERS

user device | TOTA

Policy Manager

(9)

@‘@) Request Manager

e (5) \\

V7

(6) Building Policy F

I

Manager

user \k User Preference | {(8)

; Manager

Sensor Manager

Pappachan et al., ‘Towards Privacy-Aware Smart Buildings: Capturing, Communicating, and Enforcing Privacy Policies and Preferences’

Supporting physical protection of privacy at displaytime
with a notification infrastructure for video systems.

- 0000 0OOPON
-ry g -
-

Anchor

TXD/RXD GND

Our transceivers.

WISIRILITY WARMING =T
YOUR PHONES LOCK SCREEN 15 VISIE

Several approaches to notification are
compared.

o [0 00 00 (0llom oo
0000 00 pOpe@ OO

Let’s look at OpenCV in the VM (tutorial).

Let’s also look at Haar Cascades:
https://docs.opencv.org/3.4.3/d7/d8b/tutorial_py_face
_detection.html

Let’s look at toy RSA, which shows the kind of thing
you'll be doing for the DH part of the assignment
(obviously it's not directly applicable):

https://github.com/gdanezis/petlib/blob/master/example
s/toyrsa.py

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

