
Communications Privacy III:
Paradigms of Cryptography
Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

2

Small mention of interesting things
● Prof. Diana Daly is here
● Power of privacy documentary (link)
● European commission of human rights: do UK

surveillance laws violate human rights? (link)
● Hints for using stem in Assignment 2

https://www.youtube.com/watch?v=KGX-c5BJNFk
https://www.theguardian.com/world/2017/nov/07/uk-intelligence-agencies-face-surveillance-claims-in-european-court

3

Warm-up
● Explain what a one-way function is

CC-SA License by David Sidi

Continuing last time: RSA

CC-SA License by David Sidi

“Cryptography is the only technique capable of
providing security to messages transmitted over
channels entirely out of the control of either the
sender or the receiver.” (POTL 35)

CC-SA License by David Sidi

Rivest’s riposte
● Diffie missed something: Ron Rivest’s idea of

chaffing and winnowing for confidentiality
● OK, still cryptography, but not encryption, so an

important qualification to Diffie’s comment
● Not encryption!
● Actually, he missed two things: What is another

example of an approach to confidentiality that
does not use encryption?

CC-SA License by David Sidi

Rivest’s Repost
● Chaffing and Winnowing (C&W) arose amid the

same concerns about key escrow, clipper chips,
etc. that POTL had in mind

● Key idea: Uses obfuscation to achieve
confidentiality over an insecure channel

● A kind of compulsion resistance for
cryptography development!

CC-SA License by David Sidi

Chaffing and Winnowing merges
integrity and confidentiality

● Sending a message has two parts
– authenticating (adding MACs)

– adding “chaff”

● Receiving a message requires removing the
“chaff”

CC-SA License by David Sidi

Chaff is a set of fake packets

● Chaff packets are not
part of the real
message

● The MAC of chaff
doesn’t check, so
intended recipients
can discard them

CC-SA License by David Sidi

Senders append MACs
● Message is broken into packets by the sender
● MACs are appended to each packet (note:

packet is still in the clear)
● MAC is a function of a hash of the message

contents, and a shared authentication key
● a serial number can also be added

CC-SA License by David Sidi

Chaffing and Winnowing
● Confidentiality of C&W depends on the MAC

algorithm, on how the original message is
broken into packets, and on how the chaffing is
done

● MAC should be indistinguishable from a
random function

CC-SA License by David Sidi

Public Key Cryptography
● Key idea: Encryption key is public, decryption

key is private
● “Asymmetric”
● Due to Diffie and Hellman

CC-SA License by David Sidi

Public Key Cryptography
● Key idea: Encryption key is public, decryption

key is private
● “Asymmetric”
● Question: Explain how DH is a “public key

distribution system”

CC-SA License by David Sidi

Historical Sidenote:
Diffie-Hellman-Gill Key Agreement?

● Commonly known that Merkle had ideas of
PKC as well as Diffie and Hellman

● Less well known: “Another potential one-way
function, of interest in the analysis of
algorithms, is exponentiation mod q, which was
suggested to the authors by Prof. John Gill of
Stanford University.”
– From “New Directions”!

CC-SA License by David Sidi

Public Key Cryptography
● Key idea: Encryption key is public, decryption

key is private
● “asymmetric”
● Question: The public key can also be used for

decryption, and the private one for encryption.
When?

CC-SA License by David Sidi

Big picture: Complexity results are
fundamental to PKC

● One-way functions are operations that are “easy” in one
direction, and “difficult” (better: “apparently difficult”) in
the other

● Computational assumption: adversary cannot solve the
“hard” problem

CC-SA License by David Sidi

The Rivest-Shamir-Adleman (RSA) Cryptosystem

CC-SA License by David Sidi

RSA is used all over the place

CC-SA License by David Sidi

RSA is used all over the place

CC-SA License by David Sidi

RSA is used all over the place

CC-SA License by David Sidi

RSA requires a modulus that is the
product of two primes

● randomly choose a large integer n = pq, called
the RSA modulus, with p and q prime

● p and q of almost equal length
● There are factoring algorithms that do better with

p or q of a special form, but there are only a few
instances of that form. With a cryptographic
pseudo-random number generator (CPRNG),
the probability of getting one is negligible

CC-SA License by David Sidi

Generating p and q is fraught
● Recent news: ROCA. RSA weakness found in

keys generated by Infineon TPMs and smart
cards)
– “I've completed a full scan of the crt.sh DB (CT log

search engine), which found 171 certs with ROCA
fingerprints. The list is at
https://misissued.com/batch/28/”

– mozilla-dev-security-policy@lists.mozilla.org

CC-SA License by David Sidi

RSA requires an encryption exponent

● φ(n) = (p - 1)(q - 1) is Euler’s phi (this is the
order of (/n)*)ℤ ℤ

● choose an encryption exponent e such that
– 1 <= e <= φ(n)

– e coprime with φ(n): gcd(e, φ(n)) = 1

CC-SA License by David Sidi

RSA requires a decryption exponent

● compute a decryption exponent d
● 1 <= d <= φ(n)
● ed ≡ 1 (mod φ(n))

– found with extended euclidean algorithm, since
gcd(e, φ(n)) = 1

CC-SA License by David Sidi

RSA encrypts messages encoded
as integers

● message is an integer m with 0 < m < n
– can encode m1m2 m⋯ k as such an m; a block

version of RSA

● encryption of a message m is me (mod n);
decryption is (me)d (mod n)

● we need to show that (me)d = m

CC-SA License by David Sidi

RSA relies on the difficulty of prime
factorization

● choose a large integer n
= pq, with p and q prime

● φ(n) is Euler’s phi
● choose exponents e,d

such that
– 1 <= e,d <= φ(n)

– e coprime with φ(n)

– ed ≡ 1 (mod φ(n))

● message is an integer
m with 0 < m < n

● encryption of m is

 me (mod n)
● decryption is

 (me)d (mod n)

CC-SA License by David Sidi

RSA is a cryptosystem
● To show that RSA is a cryptosystem, we need

to show that the encryption operation is
invertible

CC-SA License by David Sidi

RSA is a cryptosystem
● ed ≡ 1 (mod φ(n)) implies ed = 1 + ℓφ(n)
● (me)d = (m1+ℓφ(n)) = m(mℓφ(n)) = m(mℓ(p-1)(q-1)) = m(m(p-1))ℓ(q-1)

● If p | m, (me)d ≡ m (mod p) is trivial. (why?)
● Otherwise, by Fermat’s little theorem, m(p-1) ≡ 1 (mod p), so

m(m(p-1))ℓ(q-1) ≡ m (mod p)
● The case is exactly similar for q, so we have

(me)d ≡ m (mod pq)
● 0 < m < pq, so it is established that (me)d = m

CC-SA License by David Sidi

The algebra behind RSA
● Lots of the details you’ve just seen about the

usual implementation of RSA are inessential
● The core idea of RSA is algebraic: exponentiation

by an element coprime with the group order is an
invertible automorphism; it can be done efficiently,
whereas the inverse apparently cannot be
– a different example: elliptic curves

● Klaus Lux occasionally teaches a cryptography
course here; take it to learn more

CC-SA License by David Sidi

RSA is a partially-homomorphic
system

● What is homomorphic encryption?
● (gh)e = gehe , given that we’re in an abelian

group, so raw RSA is a multiplicatively
homomorphic system

CC-SA License by David Sidi

Big picture: Complexity results are
fundamental to PKC

● “One-way functions:” Computationally noninvertible
functions (apparently)

● “Computational assumption:” adversary cannot solve the
hard problem

CC-SA License by David Sidi

Diffie’s motivation for Public Key
Cryptography (PKC)

● Previously, cryptography was used to extend the
security of a channel to other (higher throughput,
lower latency) channels

● “The effect has been to limit the use of cryptography
to communications among people who have made
prior preparation for cryptographic security.” (647)

● Communication is now important between parties
that don’t know each other, and are not within
earshot of each other. Commercial examples abound

CC-SA License by David Sidi

Diffie’s motivation for Public Key
Cryptography (PKC)

● There’s a need for cryptography to ensure
confidentiality of communication over insecure
channels

● Key management for classical cryptographic
systems doesn’t scale well for the variety of
commercial applications cryptography will now
have
– N users is how many keys, for traditional

cryptography (e.g., OTP)?

CC-SA License by David Sidi

Diffie’s motivation for Public Key
Cryptography (PKC)

● Key management is centralized only for the public
key; private keys are kept secret by the individual
key holders
– N users, how many keys are needed?

● But private key must still be securely generated,
and kept safe
– ROCA, lest we forget. And many more

– This will come up also with “decoy-based”
approaches

CC-SA License by David Sidi

Diffie’s motivation for Public Key
Cryptography (PKC)

● Communication is now important between
parties that don’t know each other, and are not
within earshot of each other. Commercial
examples abound.

● Cannot rely on secure channels for key
exchange in advance

● Similarly, there is a need for authentication
between such parties: digital signatures

CC-SA License by David Sidi

Diffie’s “other” idea
● Compiled programs can be made hard to

reverse.
● This means it can be hard to know what

function they compute; an unknown function is
hard to invert!

● What about Kerchkoffs’s law? (654)

CC-SA License by David Sidi

Diffie’s “other” idea
● “A more practical approach to finding a pair of

easily computed inverse algorithms E and D;
such that, D is hard to infer from E, makes use
of the difficulty of analyzing programs in low
level languages ...

CC-SA License by David Sidi

... Anyone who has tried to determine what
operation is accomplished by someone else’s
machine language program knows that E itself (i.e.,
what E does) can be hard to infer from an algorithm
for E. If the program were to be made purposefully
confusing through addition of unneeded variables
and statements, then determining an inverse
algorithm could be made very difficult. Of course, E
must be complicated enough to prevent its
identification from input-output pairs.” (648)

CC-SA License by David Sidi

An example obfuscating transformation:
control-flow flattening

● fast modular exponentiation (where have we
seen that?)

Collberg and Nagra, Surreptitious Software

CC-SA License by David Sidi

Return to the Big picture:
Complexity results are fundamental

to PKC
● “One-way functions:” Computationally noninvertible

functions (apparently)

● “Computational assumption:” adversary cannot solve the
hard problem

CC-SA License by David Sidi

Return to the Big picture:
Complexity results are fundamental

to PKC
● “One-way functions:” Computationally noninvertible

functions (apparently)

● “Computational assumption:” adversary cannot solve the
hard problem

● Is this the only way? Must computational difficulty be at the
heart of things?

CC-SA License by David Sidi

Decoy-based cryptosystem

“there are secure encryption protocols that do not
employ any one-way functions, but instead rely in
their security on numerous ‘decoys’ of the actual
encrypted message, and this ‘decoy-based’
cryptography presents an important alternative to
the ‘traditional’, complexity-based, cryptography.”

(Grigoriev and Shpilrain 2)
● To keep in mind: How will this compare Chaffing

and Winnowing?

CC-SA License by David Sidi

Decoy-based cryptosystem

“the general idea of decoy ...[is] combining
private keys of Alice and Bob during
transmission.”

(Grigoriev and Shpilrain 2)
● To keep in mind: how does this compare to DH

key agreement?

CC-SA License by David Sidi

Requirements of Decoy-based
Cryptography

● Requirement: a “private space,” analogous to
the private computer that generates keys
unobserved

● This is at the end point; it is not a reversion to
requiring a secure channel

● In “public” everything is observable

CC-SA License by David Sidi

A decoy implementation that
resembles “Physical DH”

F
a F

b

F
a
 + F

b

(F
a
 + F

b
) - F

a
(F

a
 + F

b
) - F

b

CC-SA License by David Sidi

A decoy implementation that
resembles “Physical DH”

F
a F

b

F
a
 + F

b

(F
a
 + F

b
) - F

a
(F

a
 + F

b
) - F

b

works even if Eve is computationally
unbounded

CC-SA License by David Sidi

Secure multiparty communication
(SMC)

● Up to now, we have been keeping messages
private from a third party, but the communicating
parties trust one another

● What if you don’t trust who you’re communicating
with, but you need to get something done together?
– What if you want to compute something with inputs from

you and another party, but keep your input to the
computation hidden, and not rely on any trusted third
party?

CC-SA License by David Sidi

An SMC problem: Yao’s millionaires
● Two millionaires have net worths N1 and N2

● They are interested in the difference in their net
worths, but neither wants to share their
particular net worth

● Correctness: we want to compute d = N1 - N2

● Privacy: we do not want party 2 to learn
anything more about N1 from following the
protocol than they would by simply learning d

CC-SA License by David Sidi

A decoy implementation that
resembles “Physical SMC”

● Requirement: a “private space,” analogous to
the private computer that generates keys
unobserved

● This is at the end point; it is not a reversion to
requiring a secure channel

● In “public” everything is observable

CC-SA License by David Sidi

Simple decoy implementation

