
SSL/TLS and Certificate Transparency
ISTA 488: Information Privacy with Applications

David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

 2

Warm-up
● None!

 3

Small mention of interesting things
● Modifying torrc to specify exit nodes

https://www.torproject.org/docs/tor-manual.html
.en

● More EC: send me gpg
● Assignment 2 correction
● Proposals

https://www.torproject.org/docs/tor-manual.html.en
https://www.torproject.org/docs/tor-manual.html.en

 4

Hands on: sign my key
● Verify with government-issued identification
● $ gpg --recv-key EEBA8245

● $ gpg --edit-key david@sidiprojects.us

(Prompt changes from ‘$’ to ‘gpg>’)

● gpg>sign

● or

gpg>tsign

 5

Hands on: Locally sign a key

$ gpg --edit-key <KEY-ID>

gpg>lsign

● Question: why do this instead of sign?
● Question: why is there no way to “locally trust?”

 6

 7

Hands-on: Upload our public keys to
a keyserver

$ gpg \

 --keyserver pool.sks.keyservers.net \

 --send-key <YOUR KEY ID>

$ gpg \

 --keyserver pool.sks.keyservers.net \

 --send-key EEBA8245

● Why does it make sense to use a pool, rather than a single
server?

 8

Hands-on: export your key, and
publish it somewhere

● Twitter, Facebook, or your own u.arizona.edu/~janedoe
website

● Which key ID should you rely on for people to check your
key?
– None, of, them (three links): Use the full 40 hex digit fingerprint

– in ~/.gnupg/gpg.conf, include lines

keyid-format 0xlong

with-fingerprint

● Send me evidence that your key is posted for extra credit

https://futureboy.us/pgp.html#ShortKeyID
http://thread.gmane.org/gmane.ietf.openpgp/7413
https://www.debian-administration.org/users/dkg/weblog/105

 9

Hands on: Generate a revocation
certificate

$ gpg \

 --output revoke_compromised.asc \

 --gen-revoke ‘<KEY ID>’

 10

Hands on: Key Discovery
● Key signing parties
● Big Lumber (http://biglumber.com/x/web)

– Note! http site

https://biglumber.com/x/web

 11

Hands-on: Encrypt a message (PKC
method)

$ echo “sekr3t stuff” > plaintext

$ gpg -e ./plaintext

 12

Hands-on: Encrypt a message
(symmetric method)

● $ echo “sqeamish ossifrage” >
plaintext2

● $ gpg --symmetric ./plaintext2

 13

Hands-on: Sign a message
● Exercise: Look up how to sign messages in

gpg. Create a warrant canary, using this one as
an example

https://fyb.patternsinthevoid.net/canary.html

 14

Hands-on: Create a detached
signature

● Imagine you want to distribute a text file and be
sure everyone gets it unmodified

● One thing you can do is create a detached
signature, which can be downloaded separately
from the text file, and which can be used to
verify integrity

● look it up in the man page

 15

Hands-on: set up parcimonie
● Refreshing key information is very important to

keep up with revocations
● gpg --refresh-keys happens by default using

HKP, which is an unencrypted protocol, and
without anonymity

$ sudo apt-get install parcimonie

$ parcimonie --verbose

 16

SSL/TLS and Certificate Transparency

 17

What is SSL/TLS?
● Secure Sockets Layer and Transport Layer Security

protocols
– Both are for PKI, but they use different cryptosystems. TLS

is more recent

– Set up a secure channel first with asymmetric key, then
transfer a secret for symmetric key encryption of the rest of
communication

● SSL/TLS is very widely used for internet security
– “zero configuration” for most

– see: HTTP over TLS (i.e., HTTPS)

 20

Handshake protocols

credit: Vitaly Shmatikov

 21

TLS Records

 22

heartbeat extension

image credit: Vitaly Shmatikov

http://heartbleed.com/

 24

Certificate authorities form a
hierarchy

● CA is a verifier of
identity and domain
ownership, to avoid
problems arising from
impersonation

● Root CAs sign
certificates for
Intermediate CAs, who
sign for lower-level
CAs: trust chain

 25

Superfish and the trouble with certs

Much more is wrong:
https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl

http://heartbleed.com/

 26

Certificate Transparency
● Makes issuance of TLS/SSL certificates publicly

auditable
– cryptographically assured

– append-only (no deletion, modification, or retroactive
insertions)

– public: log servers advertise their URL and public key

● Notice: not about whether the certificate is valid/revoked!
● Open source, anyone can run a log server
● Now mandatory for chrome, firefox

 27

 28

Signed Certificate Timestamp

● subject of the certificate’s name
● issuer’s name

● public key of the subject
● validity period
● version number and a serial number

RFC 5280 https://tools.ietf.org/html/rfc5280#section-4.1.2

https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl

 29

 30

Verification of an SCT is part of the
TLS handshake

● An extension to the Online Certificate Status Protocol (OCSP)
Stapling TLS protocol

$openssl s_client -connect sidiprojects.us:443 \
-tls1 -tlsextdebug -status

 31

OCSP stapling is better than the
alternatives

● There are other ways for the client to verify the
SCT

● subject of the certificate’s name
● issuer’s name

● public key of the subject
● validity period
● version number and a serial number
● SignedCertificateTimestampList (as

extension)

https://tools.ietf.org/html/rfc5280#section-4.1.2

 32

OCSP stapling is better than the
alternatives

● There are other ways for the client to verify the SCT
in the TLS handshake (x509v3 certificate
extensions, or TLS extensions)

● OCSP stapling does not require going out to the CA
– the OCSP request, signed by the CA, is combined with

the certificate and sent to the client
– SCT can be included as part of this stapling

● Why might contacting the CA be a negative thing?

 33

 34

Log servers use Merkle Hash Trees
to keep track of the certificates

● Binary tree
● Calculated from the

leaves: combine
children’s hashes to get
the parent hash

● Can check integrity of a
whole lot of hashes by
checking one hash!

● All changes are auditable
credit

 35

Log servers use Merkle Hash Trees
to keep track of the certificates

● Can catch CA’s that are
adding and removing
illicit certificates

● Can catch cheating log
servers

● Not enough to just
calculate the root value
to audit the log once new
hashes are added. Why
not?

credit

 36

Walk through: auditing a log addition

 37

Walk through: Auditing for presence
of a particular certificate

http://java-lang-programming.com/en/articles/29

 38

Log servers are still centralized in
practice

● In theory, anyone can run a log
● In practice, there are only a few

– Digicert: the first

– Google: their idea; they run the big ones

$curl ct.googleapis.com/icarus/ct/v1/get-sth
{"tree_size":148531007,

"timestamp":1511196824947,

"sha256_root_hash":"bRmJZDeJZIs/WTOYZ3pA+MyJuOEZ9m+XGZIRU9fnViI=
",

"tree_head_signature":"BAMASDBGAiEAk+md3GDvKIPyuQ27UnLdDhKoVB5hn
zVDA8ZX1Dkx/JgCIQCDmYMAi6oqpAXk+LV/vIKwfrhyaCNrXl7N37moFv/BfA=="
}

● Use crt.sh to search manually from the browser. Certspotter can help you
monitor your domains (https://sslmate.com/certspotter/)

http://java-lang-programming.com/en/articles/29

 40

Other ways to fix TLS
● Using GPG, with monkeysphere

– http://web.monkeysphere.info/

● Flexible trust model of WoT used for PKI
● Problem: goes out to the keyserver for failing

requests

