COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

A

Group Privacy Technology Il

4k

Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

Administration

* Assignment |, part || due today
* The next assignment: cracking

* Preparation for the integrated session

- worksheet

- survey

(https://uarizona.col.qualtrics.com/jfe/form/SV_3UJ
OmMwhMhApPONPU)

Today

* Thompson on “trusting trust”
* But first...

Privacy and transparency: 9/11
edition

* 9/11 is coming up, but we will be doing the
Integrated session next time

* (audio clip)

Question: Evaluate the claim that this case Is
about privacy as control for bin Laden.

Decreasing trust in third parties

* “A different family of privacy technologies
considers however that placing such high levels
of trust in organizations should be avoided
whenever possible, as they leave individuals
vulnerable to incompetent or malicious
organizations.” (Diaz et al. 2)

* What do the detalils look like on this view?
Danezis on “soft vs. hard privacy technologies”

Two families of privacy technologies

Soft Privacy Technologies
* Focus on compliance.
* Focus on “internal controls”.

« Assumption: a third party
is entrusted with the user
data.

e Threat model: third party is
trusted to process user data
according to user wishes.

« Examples technologies:

» Access control, tunnel encryption
(SSL/TLS)

» “Keeping honest services safe
from insiders / employees”.

Hard Privacy Technologies

e Stronger focus on data
minimization.

« Assumption: there exists no

single third party that may be
trusted with user data.

* Threat model: a service is in the
hands of the adversary; may be
coerced; may be hacked.

« Common assumption: k-out-of-n
honest third parties.

* May relay on service integrity if
auditing is possible.

* Challenge: achieve functionality
without revealing data!

Slide credit: George Danezis

Two families of privacy technologies

Soft Privacy Technologies
* Focus on compliance.
* Focus on “internal controls”.

« Assumption: a third party
is entrusted with the user
data.

e Threat model: third party is
trusted to process user data
according to user wishes.

Hard Privacy Technologies

e Stronger focus on data
minimization.
« Assumption: there exists no

single third party that may be
trusted with user data.

* Threat model: a service is in the
hands of the adversary; may be
coerced; may be hacked.

« Common assumption: k-out-of-n
honest third parties.

« Examples technologies: e
_ ~_+May relay on service integrity if
* Access control, tunnel encryption ~ auditing is possible. \

(SSL/TLS) | “+Challenge: achieve functionality
» “Keeping honest services safe without revealing data!

from insiders / employees”.

Slide credit: George Danezis

Philip Zimmerman on trust

* “When examining a cryptographic software
package, the question always remains, why
should you trust this product? Even if you
examined the source code yourself, not
everyone has the cryptographic experience to
judge the security. Even If you are an
experienced cryptographer, subtle weaknesses
In the algorithms could still elude you.”

“In some ways,
cryptography is like
pharmaceuticals. Its
Integrity may be
absolutely crucial.
Bad penicillin looks
the same as good
penicillin.”

10

You can tell if your
spreadsheet software is
wrong, but how do you tell if
your cryptography package
IS weak? The ciphertext
produced by a weak
encryption algorithm looks
as good as ciphertext
produced by a strong
encryption algorithm.
There's a lot of snake oll out
there. A lot of quack cures.”

11

Trusting software: The trusting trust attack

13

The actual bug | planted
In the compiler would
match code in the UNIX
"login" command. The
replacement code would
miscompile the login
command so that it would
accept either the
Intended encrypted
password or a particular
known password. Thus if
this code were installed
In binary and the binary
were used to compile the
login command, | could
log into that system as
any user. ...

14

the simpl

...write one yourself!

> X

15

the simplest quine

careful! The empty program is copyrighted

/bin/true

Copyright (c) 1984 AT&T

ALl Rights Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF ATET
The copyright notice above does not evidence any

actual or intended publication of such source code,

#ident "@l#)emd/true. sh 50.1"

16

A simple Quine

chars[] = |

J‘“I'
‘0,
',
rI“II
"\,
.r“.ll
I
Y,
(213 lines deleted)
0
I
Jh:
» The string 5 is a
« representation of the body
« of this program from ‘0’
= to the end.
of
main()

|
int £;

printf{*char\ts[| = |\n");
for(i=0; s[/]; I++)
printf{“\t%d, \n", s[i]);
printi("%s ", §);
|

Here are some simple transliterations to allow
a non-C programmer to read this code.

= assignment

= ml,.lﬂ to .ED,

e not equal to .NE.

++ increment

x' single character constant

"xxx" multiple character string

%d format to convert to decimal

%s format to convert to string

\t tab character

W newline character

FIGURE 1.

17

http://trillian.mit.edu/~jc/humor/ATT_Copyright_true.html

2\
A simple quine

chars[]=|

t“,'
iD;.
.m‘b
r},r
Im‘,-
F“!I
L
Fm"
(]
H
f=
« The string s is a
+ of this program from ‘0’
* to the end.
+f
main{)
|
int §;

printf{*char\ts[| = |\n");
forii=0; s[/]; i++)
printf{*\t%d, \n", s[/]);
P"""ﬂ'f"'ﬁis', ;]:
|

Here are some simple transliterations to allow
a non-C programmer to read this code.

- assignment

= ml,.lﬂ to .ED,

o not equal to .NE.

++ increment

x’ single character constant

"xxx" multiple character string

%d format to convert to decimal

%s format to convert to string

\t tab character

\n newline character

FIGURE 1.

18

A quine in Python

from string import Template

second = Template ('print (S{sg}from string import Template${sqg}) \nprint ("second =
Template (${sg}" + second.template.encode (${sglunicode_escape${sqg}).decode() + "$
{sg}") \nprint (second.substitute (sg="S${sg}")) ")

print ('from string import Template')

print ("second = Template('" + second.template.encode ('unicode_escape') .decode ()
+ IIIII)

print (second.substitute (sg="""))

This a quick one | hacked together. There are (much) simpler ones, more boring ones,
more interesting ones. Try it!

19

¢ = naxt();
if{c 1= "\\")
returnic);

c = naxt{);

ifjc == "\\')
return{’\\');

ifilc == "n")
return{"\na’);

iffc == "v’)

return("\w’);

FIGURE 2.1.

c=next().
ifc 1= "\\")
returnic);

c = next{)

H{(: == ""u.."l.,"]
return(\\°);

iflc == 'n")
returnd™ n');

fic =="v’)
return({11);

FIGURE 2.3.

20

guines in Compilers

compile(s) i
char =5;
|
| compile{s)
char =5, \
FIGURE 3.1. | \
if{matchis, “pattemn1°)) |
compile(s) compile ("bug1°);
char »5; returmn; /
| |
i(matchys, “pattemn”)) ifimatchis, “pattern 2")) |
compile(*bug”); compile (“bug F'i:
retum; return; /
| ' ”
| b /
FIGURE 3.2. FIGURE 3.3.

“that’s worrying... let’s audit the source code for
both the login command and for the compiler we
use, and recompile everything cleanly”

22

“that’s worrying... let’'s audit the source code for
both the login command and for the compiler we
use, and recompile everything cleanly”

nope

23

guines in Compilers

ie(s) l
char =5;
|
| compile(s)
char =§;
FIGURE 3.1. :
ifimatch(s, “pattemn1~)) |
compile(s) compile ("bug1”);
char »s; return;
I i
if(matchis, "pattern”)) | iffmatch(s, “pattern 27)) |
compile(*bug"), compile ("bug 2°);
return; return;
| Y
| |
FIGURE 3.2, FIGURE 3.3.

The moral is obvious. You
can't trust code that you did
not totally create yourself.
(Especially code from
companies that employ
people like me). No amount
of source-level verification
or scrutiny will protect you
from using untrusted code.

Ken Thompson, ACM Turing
Award Speech, “Reflections
on Trusting Trust”

Q: What is ‘trust’ here?
What does being stuck
In this situation tell us
about it?

