
Group Privacy Technology II

Information Privacy with Applications
David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]




Administration
● Assignment I, part II due today
● The next assignment: cracking
● Preparation for the integrated session

– worksheet
– survey 

(https://uarizona.co1.qualtrics.com/jfe/form/SV_3UJ
9mwhMhApONPU)



Today
● Thompson on “trusting trust”
● But first...



Privacy and transparency: 9/11 
edition

● 9/11 is coming up, but we will be doing the 
integrated session next time

● (audio clip)

Question: Evaluate the claim that this case is 
about privacy as control for bin Laden.



Decreasing trust in third parties

● “A different family of privacy technologies 
considers however that placing such high levels 
of trust in organizations should be avoided 
whenever possible, as they leave individuals 
vulnerable to incompetent or malicious 
organizations.” (Diaz et al. 2)

● What do the details look like on this view? 
Danezis on “soft vs. hard privacy technologies”



Two families of privacy technologies

Soft Privacy Technologies

• Focus on compliance.
• Focus on “internal controls”.
• Assumption: a third party 
is entrusted with the user 
data.

• Threat model: third party is 
trusted to process user data 
according to user wishes.

• Examples technologies:
• Access control, tunnel encryption 

(SSL/TLS)

• “Keeping honest services safe 
from insiders / employees”.

Hard Privacy Technologies
• Stronger focus on data 

minimization.
• Assumption: there exists no 
single third party that may be 
trusted with user data. 

• Threat model: a service is in the 
hands of the adversary; may be 
coerced; may be hacked. 

• Common assumption: k-out-of-n 
honest third parties.

• May relay on service integrity if 
auditing is possible.

• Challenge: achieve functionality 
without revealing data!

Slide credit: George Danezis



Two families of privacy technologies

Soft Privacy Technologies

• Focus on compliance.
• Focus on “internal controls”.
• Assumption: a third party 
is entrusted with the user 
data.

• Threat model: third party is 
trusted to process user data 
according to user wishes.

• Examples technologies:
• Access control, tunnel encryption 

(SSL/TLS)

• “Keeping honest services safe 
from insiders / employees”.

Hard Privacy Technologies
• Stronger focus on data 

minimization.
• Assumption: there exists no 
single third party that may be 
trusted with user data. 

• Threat model: a service is in the 
hands of the adversary; may be 
coerced; may be hacked. 

• Common assumption: k-out-of-n 
honest third parties.

• May relay on service integrity if 
auditing is possible.

• Challenge: achieve functionality 
without revealing data!

Slide credit: George Danezis



9

Philip Zimmerman on trust
● “When examining a cryptographic software 

package, the question always remains, why 
should you trust this product? Even if you 
examined the source code yourself, not 
everyone has the cryptographic experience to 
judge the security. Even if you are an 
experienced cryptographer, subtle weaknesses 
in the algorithms could still elude you.”



10

“In some ways, 
cryptography is like 
pharmaceuticals. Its 
integrity may be 
absolutely crucial. 
Bad penicillin looks 
the same as good 
penicillin.” 



11

You can tell if your 
spreadsheet software is 
wrong, but how do you tell if 
your cryptography package 
is weak? The ciphertext 
produced by a weak 
encryption algorithm looks 
as good as ciphertext 
produced by a strong 
encryption algorithm. 
There's a lot of snake oil out 
there. A lot of quack cures.”



13

Trusting software: The trusting trust attack



 14

The actual bug I planted 
in the compiler would 
match code in the UNIX 
"login" command. The 
replacement code would 
miscompile the login 
command so that it would 
accept either the 
intended encrypted 
password or a particular 
known password. Thus if 
this code were installed 
in binary and the binary 
were used to compile the 
login command, I could 
log into that system as 
any user. ...



15

the simplest quine

...write one yourself!



16

the simplest quine

careful! The empty program is copyrighted

/bin/true 



17

A simple Quine

http://trillian.mit.edu/~jc/humor/ATT_Copyright_true.html


18

A simple quine
①

②

①①



19

A quine in Python
from string import Template

second = Template('print(${sq}from string import Template${sq})\nprint("second = 
Template(${sq}" + second.template.encode(${sq}unicode_escape${sq}).decode() + "$
{sq}")\nprint(second.substitute(sq="${sq}"))')

print('from string import Template')

print("second = Template('" + second.template.encode('unicode_escape').decode() 
+ "'")

print(second.substitute(sq="'"))

This a quick one I hacked together. There are (much) simpler ones, more boring ones, 
more interesting ones. Try it!



20



21

quines in Compilers
targeting login command

emit a backdoor!



22

“that’s worrying... let’s audit the source code for 
both the login command and for the compiler we 

use, and recompile everything cleanly”



23

“that’s worrying... let’s audit the source code for 
both the login command and for the compiler we 

use, and recompile everything cleanly”

nope



24

quines in Compilers

targeting compiler



The moral is obvious. You 
can't trust code that you did 
not totally create yourself. 
(Especially code from 
companies that employ 
people like me). No amount 
of source-level verification 
or scrutiny will protect you 
from using untrusted code.

Ken Thompson, ACM Turing 
Award Speech, “Reflections 
on Trusting Trust”

Q: What is ‘trust’ here? 
What does being stuck 
in this situation tell us 
about it?


