
Trust and Privacy III: PGP and the Web of Trust
ISTA 488: Privacy Technologies in Context

David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]


Administration
● Mejores Dias
● Parcimonie

https://www.youtube.com/watch?v=7CqOYM7cCX8
https://github.com/EtiennePerot/parcimonie.sh


CC-SA License by David Sidi

“cryptography can best be thought of as a 
mechanism for extending the confidentiality and 
authenticity of one piece of information (the key) 

to another (the message).” (POTL 34)



CC-SA License by David Sidi

Key management problems for 
symmetric cryptosystems

● One way to share a secret: send it via a physically 
secured channel

● Keep close watch on your infrastructure
● Problem: expensive, hard
● Problem: lots of useful channels aren’t physically secure

– early example: radio, starting in 1905 (secret was in the rotor 
machines)

– (old) crypt implements a rotor machine!



CC-SA License by David Sidi

Asymmetric encryption
● Conventional symmetric 

cryptography has a 
shared secret key: how do 
you get it to both parties?

● First contribution of 
asymmetric cryptography 
was to key management, 
by providing a secure way 
to send a secret over an 
insecure channel



CC-SA License by David Sidi

Asymmetric cryptosystems have key 
binding problems

● asymmetric cryptosystems can help with key 
distribution, but they still face a key binding 
problem

● public key is associated with a certificate, which 
gives some human-interpretable identifier 
(“user ID”) to associate with the key

● what’s to say that the certificate is right?



CC-SA License by David Sidi



CC-SA License by David Sidi



CC-SA License by David Sidi



CC-SA License by David Sidi



CC-SA License by David Sidi

Asymmetric cryptosystems have key 
binding problems

● public key is associated with a certificate, which 
gives some human-interpretable identifier to 
associate with the key

● who’s to say that the certificate is right?
● PGP’s answer: nothing technical. What 

addresses the key binding problem is social: 
the web of trust.



Sidenote on PGP

● Fashionable to be down on PGP: 
– “Why Johnny can’t encrypt”

– GPG and Me

– What’s the matter with PGP

– Giving up on GPG

● PGP has many uses, though
● A power tool: You do need to know how to use 

it, but it’s not hard if you exercise some care



● Meet in person
● keybase
● Multiple sources with 

archived copies: 
mailing lists, twitter, 
etc.

● biglumber

Making the WoT useful



Hands-on: GPG

● GPG is the Gnu Privacy Guard

TO THE SERVER!



Hands-on: Generate a key

● Must be 4096, with SHA-2 rather than SHA-1



Hands-on: Generate a key

$ gpg --full-generate-key



WoT via GPG “debugging” output

What is a fully valid key?



Introducers vs. Signed keys

● Essential to the PGP web of trust
● An introducer is trusted to some extent to 

verify other keys (not shared with keyservers)
● “Extent” here has two dimensions: full or 

marginal, and depth
● A signed key is one that has been certified to 

belong to the person identified by the user ID 
(shared with keyservers, unless you specify)



A fully valid key is signed with valid 
keys, and has a short signed path

Alice
(ultimately trusted)

Bob
signs

https://www.freebsd.org/cgi/man.cgi?query=crypt&sektion=1


A fully valid key is signed with valid 
keys, and has a short signed path

Alice
Bob

signs

5



A fully valid key is signed with valid 
keys, and has a short signed path

Alice

fully trusted

Bob
signs

tsign



What happens when you sign a key 
that has tsigned another key

Alice

Central key
company X

Joe Bloggs
company X

tsigns

signs

John Doe
company X

signs

Jane Doe
company X

signs

tsigns

tsigns

tsigns



A fully valid key is signed with valid 
keys, and has a short signed path

Alice

marginally trusted

Bob
signs

marginally trusted

signs

marginally trusted

signs

“three marginals needed”



Trust models



Hands-on: Generate a key
● An introducer is trusted to some extent to verify other keys
● Extent has two dimensions: full or marginal, and depth



A fully valid key is signed with valid 
keys, and has a short signed path

Alice

fully trusted

Bob
signs

5

fully trusted at depth 2



Hands on: sign my key

● Verify with government-issued identification
● $ gpg --recv-key EEBA8245

● $ gpg --edit-key david@sidiprojects.us

(Prompt changes from ‘$’ to ‘gpg>’)

● gpg>sign 

● or 

gpg>tsign



Hands on: Locally sign a key

$ gpg --edit-key <KEY-ID>

gpg>lsign

● Question: why do this instead of sign?




