COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Trust and Privacy IV: Trusting software @
ISTA 488: Privacy Technologies in Context 4

David Sidi (dsidi@email.arizona.edu)

mailto:dsidi@email.arizona.edu?subject=[ISTA%20488]

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Small mention of interesting things

e Since it's tricky, and I've received some
guestions: let’s review the WoT again, looking
at the most indirect case of a valid key that Is
possible for gpg using the default settings

COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

A

In words: valid keys are either signed (or ‘ g
“certified”) by you, or signed by someone valid for Alice trust signatures
who is at most k-1 steps from an

introducer whom you “trust at depth k.” - > _
The top diagram is the most indirect case &) o
possible with the default settings of gpg: not valid for regular” signatures
the total path length between Alice and Alice

Bob is 5.

COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

A

In words: valid keys are either signed (or
“certified”) by you, or signed by someone
who is at most k-1 steps from an
introducer whom you “trust at depth k.”
The top diagram is the most indirect case
possible with the default settings of gpg:
the total path length between Alice and

School of Information

valid for Alice trust signatures

O

\ /
not valid for
Alice

“regular” signatures

Bob is 5.

g

/

blue marks where regular
and trust signatures are the s
from Alice’s perspective

also: throughout the diagram ,

ame

y - N
\ 4

Y

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES
School of Information

This is highly unclear in “An
advanced introduction to Gnupg”

4.7.3 Trusted Introducers

When signing a key, it is possible to indicate that the key holder should
be a trusted introducer. For instance, an organization may have a single
key, say pgp@company . com, that they use to sign all of their employees’
keys. If employees sign pgp@company . com using a trust signature, then
anyone who trusts, say, alicefcompany.com, will, as usual, consider
pgplcompany . com to be not only verified, but, due to the trust signa-
ture, a trusted introducer. Consequently, that person will also consider any
keys that pgp@company . com signed to be verified, which, in this case, is
everyone in the company. The following example illustrates this idea:

Juliet@ alicef pogpi bob
example -- tsign —--> company —-- tsign —--> company —— slgn ——> [Ecompany
.0rg .com .com . com

In GnuP’G, Juliet doesn’t actually have to use a trust signature to sign
alicelcompany.com’s key: she can just use a normal signature and then
set the ownertrust for alicelcompany.com appropriately.

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES
School of Information

This is highly unclear in “An
advanced introduction to Gnupg”

e

y

4.7.3 Truste# at depth 2

When signing a

be a trusted introd
key, say pgpEcomps
keys. If employees !

5. dicate that the key holder should
For instance, an organization may have a single
.com, that they use to sign all of their employees’
gn pgplcompany . com using a trust signature, then
anyone who trusts, say, alicefcompany.com, will, as usual, consider
pgplcompany . com to be not only verified, but, due to the trust signa-
ture, a trusted introducer. Consequently, that person will also consider any
keys that pgp@company . com signed to be verified, which, in this case, is
everyone in the company. The following example illustrates this idea:

Juliet@ alicef pogpi bob
example -- tsign —--> company —-- tsign —--> company —— slgn ——> [Ecompany
.0rg .com .com . com

In GnuP’G, Juliet doesn’t actually have to use a trust signature to sign
alicelcompany.com’s key: she can just use a normal signature and then
set the ownertrust for alicelcompany.com appropriately.

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Continuing from last time: the trusting trust attack

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES
School of Information

the simplest quine

...write one yourself!

T

33

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES
_| School of Information

the simplest quine

careful! The empty program is copyrighted

/bin/true

Copyright (c) 1984 AT&T

ALl Rights Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T
The copyright notice above does not evidence any

actual or intended publication of such source code,

#ident "@l#)emd/true. sh 50.1"

34

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

A simple Quine

chars[] = |
rulp
iu’l
II"'”I“'I-
rI“.
"',
.rm.ll
1
rm’l
(213 lines deleted)
0

B

f=

« The string 5 is a

« representation of the body
« of this program from ‘0’

= to the end.

o/

main()
|
int §;

printf{"char’\ts[| = |\n");
for(i=0; s[/], i++)
printh(*\t%d, \n", s[i])
printf(“%s ", 8);
!

Here are some simple transliterations to allow
a non-C programmer to read this code.

= assignment

- equal to LEQ.

o not equal to .NE.

++ increment

'x’ single character constant

“xxx” multiple character string

sd format to convert to decimal

%S format to convert to string

A tab character

\n newline character

FIGURE 1.

35

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

A simple quine

(not idiomatic)

chars[] = |
rulp

iD:I

l”"”n‘b

1,

Y

.rm.ll

L

rmpl

(213 lines deleted)

>0
I

f=

« The string 5 is a

« representation of the body
« of this program from ‘0’

= to the end.

o/

main()
|
int §;

printf{"char’\ts[| = |\n");
for(i=0; s[/], i++)
printh(*\t%d, \n", s[i])
printf(“%s ", 8);
!

Here are some simple transliterations to allow
a non-C programmer to read this code.

= assignment

= mUH to .El:l.

o not equal to .NE.

++ increment

'x’ single character constant

“xax" multiple character string

%d format to convert to decimal

%s format to convert to string

\t tab character

W newline character

FIGURE 1.

36

A

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A quine in Python

from string import Template

second = Template ('print (${sqglfrom string import Template${sqg}) \nprint ("second =
Template (${sg}l" + second.template.encode (${sglunicode _escape${sqg}) .decode() + "$
{sg}") \nprint (second.substitute(sg="${sqg}")) ")

print ('from string import Template')

print ("second = Template('" + second.template.encode ('unicode_escape') .decode ()
+ |||||)

print (second.substitute(sg=""'"))

37

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

A nonexample in Python

#1/usr/bin/env python
import sys
import os

here = os.path.join(os.getcwd(),(gys.argv[e])

with open(here) as f:
print(''.join(line for line 1in f))

(No input allowed!)

38

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

A telling race condition

e Suppose | run one of the
previous (purported) quines,
but before the first line of code
IS run that line Is changed in
the program

* The quine will print out the
program as modified, not the
one that is running

 How do we make sure that the
running code is the code that
{was compiled, was run by the
Interpreter}?

- ™
e e . o i
= L = !.-n-! -

System Calls

User ISA
Machina ABI

Smith and Nair, Virtual Machines, p. 10

39

A COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES
_| School of Information

Portability and hidden behavior

c = next(),
ific 1= "\\)
returnic);
¢ = next|)
ifc == "\\")
refurn{ W),
iflc == "n")
return{"\n');
iffc == "v')
return{”w '),
FIGURE 2.1.
¢ = next),
if(c 1= "\\’)
returnic);
c=next{)
ific == "\\")
return{’\\');
iflc == "n")
return("\. n’);
iffc == v’}
returny11);

FIGURE 2.3.

A

COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

compile(s) i
char «§,
| \
[ﬂﬂTﬁHﬂ:‘ \\\
W "E; \\
FIGURE 3.1. :
if{matchis, “pattern17)) |
compile(s) compile (“bug1°”);
char »s; retumn;
I |
f{matchis, *pattern’) | iffmatchis, "pattern 27)) |
compile(“bug"); compile (*bug 2°);
retumn; retumn;
| f
| b
FIGURE 3.2. FIGURE 3.3.

41

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

“that’s worrying... let’s audit the source code for
both the login command and for the compiler we
use, and recompile everything cleanly”

42

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

“that’s worrying... let’s audit the source code for
both the login command and for the compiler we
use, and recompile everything cleanly”

nope

43

COLLEGE OF SOCIAL & BEHAVIORAL SCIENCES

School of Information

A

e
char »5;
|

|
FIGURE 3.1.

compile(s)
char »5;

I
ilfmatchs, “pattern”)) |
compile("bug’);
return;

compile(s)
char =5;
I
ifimatchis, “pattern1°)) |
compile ("bug1”);
retum;

|

ifimatchis, “pattern 2)) |
compile ("bug 27);
return;

FIGURE 3.2.

FIGURE 3.3.

44

oy

The moral is obvious.
You can't trust code that
you did not totally create
yourself. (Especially
code from companies
that employ people like
me). No amount of
source-level verification
or scrutiny will protect
you from using untrusted
code.

Ken Thompson, ACM
Turing Award Speech,
“Reflections on Trusting
Trust”

A

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

Is Ken Thompson right? (2 min)

46

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Is Ken Thompson right?

e Narrow answers:

- Rewrite the compiler completely (detalls...)
- Wheeler’s Diverse Double Compiling (link)

47

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Is Ken Thompson right?

e Narrow answer:

- Rewrite the compiler completely (detalls...)
— Diverse Double Compiling
 Broader answers (revealed by narrow ones):.

- Pretty much: yes. You can’t trust code that you did
not totally create yourself (and even then, there are
further problems of course)

48

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Case study: two netizens arguing about Keepass
and 1Password

51

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

Find the snakeoill tests, and ask about whether we
are stuck trusting trust

52

COLLEGE OF 50CIAL & BEHAVIORAL 5CIENCES

School of Information

What is KeePass?

Today you need to remember many passwords. You need a password for the Windows network logon, your e-mail account, your website's FTP password, online passwords (like website member account), etc. etc. etc. The list is
endless. Also, you should use different passwords for each account. Because if you use only one password everywhere and someone gets this password you have a problem... A serious problem. The thief would have access to
your e-mail account, website, etc. Unimaginable.

KeePass is a free open source password manager, which helps you to manage your passwords in a secure way. You can put all your passwords in one database, which is locked with one master key or a key file. So you only have

to remember one single master password or select the key file to unlock the whole database. The databases are encrypted using the best and most secure encryption algorithms currently known (AES and Twofish). For more
information, see the features page.

Is it really free?
Yes, KeePass is really free, and more than that: it is open source (OSI certified). You can have a look at its full source and check whether the encryption algorithms are implemented correctly.

As a crypiography and computer securily expert, [have never undersiood the current fuss about the open source soffware movement. In the cryplography world, we consider open source necessary for good security; we have for decades. Public security is always more
Secure than propristary security. II's true for cryptographic algorithms, security protocols, and Securily Source code. For us, open Source isn't just a business model; il's smart engineering practice.
Bruce Schneier, Crypto-Gram 1399-03-15

The 1Password
you need to
remember...

With 1Password you only ever need to
memarize... one password.

Allyour other passwords and important
information are protected behind your Master
Password, which only you know.

Watch the video

m

53

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

ﬂ. School of Information

| never claimed or implied that latest design of 1Pass repository is worse or
even security-equivalent to KeePass. | simply pointed out that 1Pass
team has made their share of mistakes (plural), so | have as much
trust in their competence as, likely, in KeePass team.

With author trust being a non-issue (humor me in this assumption), we
must look at facts & evidence only.

Both 1Pass and KeePass repositories are well-specified, with latest 1Pass
clearly having an advantage due to AEAD.

1Pass implementation quality is unknown due to it being closed-
source, and I'm not aware of any independent audits. KeePass
Implementation quality can at least be observed & discussed. 1Pass
cannot even be discussed due to being a "trust-us" blackbox. Well, |
don't trust them.

| would wager that even you don't know whether 1Pass actually HMAC's
their 1Vs.

On a more holistic level, this category of software Is client-based password
managers (as opposed to centralized password managers like LastPass).
My position is that trustworthy client-based password managers **
cannot be closed-source.

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

ﬂ. School of Information

You start out in a reasonable place but then rhetorically overplay your
hand: I'm pretty sure they do HMAC their 1V, (a) because they say
they do and (b) because there are open source implementations
of their file format that (i) do the HMAC verification and (ii) would
not work properly if they weren't HMAC'ing their IV. You can
check right now: it took 2 minutes to find the Python code that
computes the HMAC.

It's a minor thing to be wrong about, but it's also something you could
have checked yourself before dinging me about it. :)

The story of this whole thread culminates in a place where | trust
1Password a lot more than KeePass; KeePass knows they need a
better cryptosystem, but retains a broken one. 1Password has an
extensively documented file format with 3rd party implementations,
the author of which format actually responds to academic research.

I'd still use KeePass before | used LastPass, though, and would still

use KeePass before | used no password manager! -

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A\

Guilty as charged on the HMAC'ing the IV verification - bad example
for a still-valid point. You still don't know whether closed-source code
IS using the rng properly, sending "debugging information"
containing your private data to the mothership when internet is
available/stars align, creating plaintext temporary files in %temp%
folder (accessible by all other apps), etc, etc. le. there is a myriad of
things the implementation could get seriously wrong, even though
the repository itself is encrypted securely.

| would argue that KeePass and its loyal and vast userbase does
not in fact seem to know they need a better cryptosystem (and
ideally better implementation). My HN post was intended to bring
this to everyone's attention.

"I'd still use KeePass before | used LastPass, though, and would still
use KeePass before | used no password manager!" - so would |.

56

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A\

Some of the things you've mentioned here you actually can test for
even on closed-source implementations. It's pretty easy to trace
the activity of the app to see if it creates temporary files or does
network activity so you can you investigate that stuff.

As for the other things, like using the rng properly and whatnot, no,
you can't really check that stuff. But your implication here is that
open-source apps can be trusted because you can verify that
stuff, and | don't buy that. Unless you yourself are a crypto
expert that's qualified to carry out such an audit, and you have
the spare time / inclination to perform a full audit of the app,
then there's no reason why it being open-source should make it
any more trustworthy. Perhaps if some independent trustworthy
third party performed the audit you could then decide to trust it,
but closed-source apps can still be audited, it just requires the
help of the app developer to do so.

57

%F | School of Information

cont'd) ... and of course even if the app Is audited (whether open-
or closed-source), that audit will only really verify the particular
version that was audited. Future changes may introduce
vulnerabilities again, so unless someone qualified to do so is
constantly auditing all future changes, then you can't really
trust it anymore, since your trust model is that the source
needs to be independently verified to be trusted.

On other hand, if your trust model is that you determine
whether you trust the people involved to get it right, then it
doesn't matter if the app is open- or closed-source, as long as
it's developed by the right people. Granted, it can be hard to
determine whether someone can be trusted to get it right without
Independent audits, but speaking personally, | take tptacek's "I
feel like they know what they're doing" recommendation as
carrying a fair amount of weight. | certainly would welcome an
Independent audit of 1Password, but | recognize that | can't really
expect a closed-source software vendor to hand the source of their
flagship application to a 3rd party.

58
(if it isn't clear, I'm a happy user of 1Password)

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A\

You can't expect a closed-source crypto software vendor to
hand the source to a 3rd party, but you have no problems
handing that vendor's software the keys to your life. I'm not
going to debate the merits of that decision, but it's a choice you
make based on your individual, hard-to-quantify perception of
‘trust’.

| have ample factual evidence that both KeePass and 1Pass authors
had made multiple crypto blunders. Both score low on my
trustworthiness scale.

It's extremely difficult to prove crypto correct, but it's very easy to
discover that it's wrong. Open-source software allows one to
discover crypto mistakes. It does not allow one to prove crypto
correctness.

On the other hand, if you use closed-source software like
1Password, you cannot discover crypto mistakes regardless of

your level of crypto expertise.
59

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A

(cont’d) ... Once we start making crypto choices based on
tptacek's, schneier's, or anyone else's feelings about
someone seeming to know what they are doing and getting a
'‘good vibe', the dark age of crypto will truly be upon us. Many
folks trust & use PasswordSafe not because Schneier wrote it (|
hope) but because it is open-sourced. Many folks trust & use
Tarsnap not because Percival wrote it, but because the client is
open-sourced.

60

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A\

> you have no problems handing that vendor's software the keys to your life.

| rely on a large amount of closed-source software for a great many things in
my life. I'm not sure why my password manager is notably different than any
other software that manages particularly important information.

> Many folks trust & use PasswordSafe not because Schneier wrote it (I hope) but
because it is open-sourced.

Virtually nobody that uses it is qualified to actually judge whether it's
secure. At some point you have to put your trust in some person to tell you
whether or not it's secure. In the case of a fully-audited open-source
solution, you're putting your trust in the auditor to have done a good job. In
the case of an open-source solution that was audited at one point but has
continued development since then, you're putting your trust in a
combination of the auditor to have done a good job and the original
developer to have maintained the quality level of the software during
subsequent development. In the case of an open-source solution that has
not been audited at all, you're putting your trust in the developers, and in the
anonymous collection of other people that may or may not have actually
examined the source in any meaningful fashion. And in a closed-source
solution, you're putting your trust in the developers.

61

http://trillian.mit.edu/~jc/humor/ATT_Copyright_true.html

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

A\

(cont’d) ... The biggest problem | have with your position is you're making
the implicit assumption that, just because open-source software makes its
source available to the world, this means enough anonymous other people
have independently audited the software in order to feel reasonably
secure. But this assumption is flawed, for several reasons. First, just because
the source is available doesn't mean anyone's actually bothered to read it,
and even very popular projects can suffer from this problem if the project
Isn't particularly accessible to contributors (case in point, AlUl the OpenSSL
source is pretty hard to grok, and historically has had very few contributors,
which led to issues like Heartbleed). Second, if people do read through the
source, this doesn't in any way mean that anyone who's sufficiently
qualified to judge the crypto has done so. Thirdly, even if someone who is
sufficiently qualified has read through the source, it doesn't mean they've
done so in a rigorous-enough fashion to really qualify as an audit.

In the end, unless you personally are sufficiently qualified to perform an
independent audit of the open-source software, and unless you personally
have actually performed said audit, then you are ultimately just trusting
people. Which is exactly the same situation you have with closed-source
software.

62

The moral is obvious.
You can't trust code
that you did not totally
create yourself.
(Especially code from
companies that employ
people like me). No
amount of source-level
verification or scrutiny
will protect you from
using untrusted code.

Ken Thompson, ACM
Turing Award Speech,
“Reflections on Trusting
Trust”

COLLEGE OF 50CIAL & BEHAVIORAL SCIENCES

School of Information

In my argument | never make a leap from "OSS allows
discovery of crypto mistakes" to "OSS must be higher quality"
or "OSS is better for the masses than closed-source".

In fact, I've never seen more crypto bs than in OSS. I'm not
beating the OSS drum for the "good people of the world". OSS
IS a crypto requirement for me, personally, to make intelligent
risk decisions.

Uneducated people have no choice but to trust someone.
Educated people (ex. tptacek) should have the capability to
discover crypto mistakes to make their own decisions
against their own risk tolerance equation. Absence of
mistakes doesn't prove anything, but their presence speaks
volumes.

65

