

Communications Privacy III: Paradigms of Cryptography

Privacy Technology in Context David Sidi (dsidi@email.arizona.edu)

Today we'll go over some of the things that will be useful for the assignment, then talk about a new topic in communications privacy: TLS and the public key infrastructure (PKI) that supports it

Small mention of interesting things

- Couple of things on RSA
- Writing assignment on Thursday, so break up and discuss: what is DH? One person will present for each group.
- walk through: setting up a DO droplet

The human rights groups are arguing that British spy programs violate four key rights protected under the convention: the right to privacy; the right to a fair trial; the right to freedom of expression; and the right not to be discriminated against.

Don't forget you've got a reading assignment due on Thursday! As a boost for that, take 5 minutes with a partner and explain how the Diffie-Hellman key exchange protocol works.

Generating p and q in RSA

- Now old news: ROCA. RSA weakness found in keys generated by Infineon TPMs and smart cards)
 - "I've completed a full scan of the crt.sh DB (CT log search engine), which found 171 certs with ROCA fingerprints. The list is at https://misissued.com/batch/28/"
 - mozilla-dev-security-policy@lists.mozilla.org

CC-SA License by David Sidi

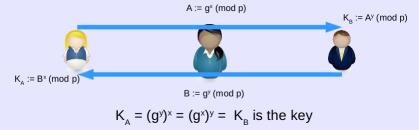
Small mention of interesting things

- Couple of things on RSA
- Writing assignment on Thursday, so break up and discuss: what is DH? One person will present for each group.
 - historical sidenote: Gill and the history of "Diffie Hellman"
- walk through: setting up a DO droplet

The human rights groups are arguing that British spy programs violate four key rights protected under the convention: the right to privacy; the right to a fair trial; the right to freedom of expression; and the right not to be discriminated against.

Don't forget you've got a reading assignment due on Thursday! As a boost for that, take 5 minutes with a partner and explain how the Diffie-Hellman key exchange protocol works.

Historical Sidenote: Diffie-Hellman-Gill Key Agreement?


- Commonly known that Merkle had ideas of PKC as well as Diffie and Hellman
- Less well known: "Another potential one-way function, of interest in the analysis of algorithms, is exponentiation mod q, which was suggested to the authors by Prof. John Gill of Stanford University."
 - From "New Directions"!

CC-SA License by David Sidi

Public Key Cryptography

- Key idea: Encryption key is public, decryption key is private
- "Asymmetric"
- Question: Explain how DH is a "public key distribution system"

Small mention of interesting things

- Couple of things on RSA
- Writing assignment on Thursday, so break up and discuss: what is DH? One person will present for each group.
 - historical sidenote: Gill and the history of "Diffie Hellman"
- walk through: setting up a DO droplet

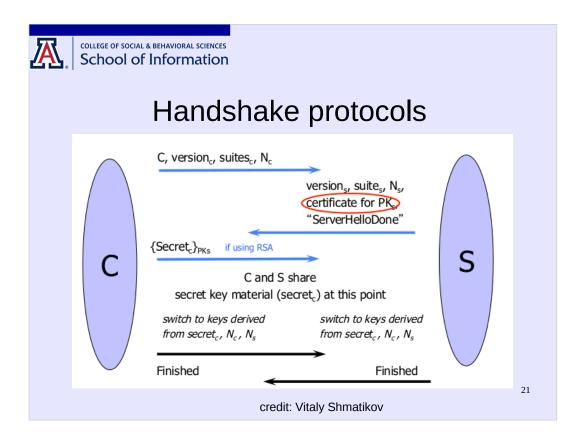
16

The human rights groups are arguing that British spy programs violate four key rights protected under the convention: the right to privacy; the right to a fair trial; the right to freedom of expression; and the right not to be discriminated against.

Don't forget you've got a reading assignment due on Thursday! As a boost for that, take 5 minutes with a partner and explain how the Diffie-Hellman key exchange protocol works.

SSL/TLS and Certificate Transparency

17


so far we've talked about cryptographic primitives, but now we're going to look at a prominent system that uses cryptography for communications privacy: TLS. "Prominent" here means "widely used:" probably in terms of bits shipped, and number of users, TLS is the number one use of crypto. Most people use it without even realizing it!

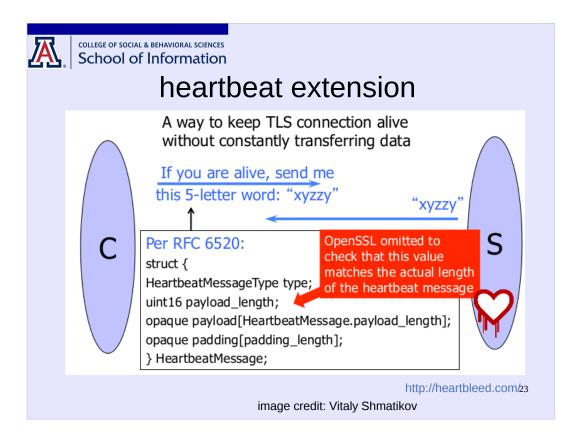
One cost of usability in the TLS case is that it gets you mixed up with the CA mafia, so there has been recent work on making the whole system a bit more trustworthy by at least providing some auditability. That work goes under the heading of 'Certificate Transparency,' and we'll talk about it as well as a lens into the way TLS works.

What is SSL/TLS?

- Secure Sockets Layer and Transport Layer Security protocols
 - Set up a secure channel first with asymmetric key, then transfer a secret for symmetric key encryption of the rest of communication
- SSL/TLS is very widely used for internet security
 - "zero configuration" for most
 - see: HTTP over TLS (i.e., HTTPS)

TLS involves two protocols

- Handshake protocol: set up the session key
- Record protocol: symmetric cryptography with the session key to provide a secure authenticated channel


•

• TLS is worried about MiTM and passive attackers.

TLS Records

+	Byte +0	Byte +1	Byte +2	Byte +3
Byte 0	Content type			
Bytes	Version		Length	
14	(Major)	(Minor)	(bits 158)	(bits 70)
Bytes 5(m-1)	Protocol message(s)			
Bytes m(p-1)	MAC (optional)			
Bytes p(q-1)	Padding (block ciphers only)			

Many things can go wrong with TLS: one famous recent thing was the Heartbleed vulnerability

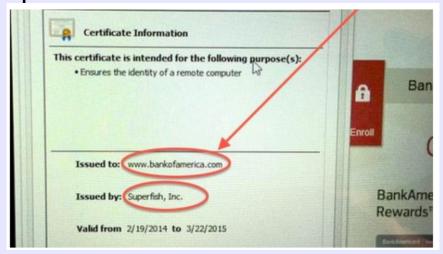
There are more fundamental problems, too, to do with the trust model (draw architecture on the board)

DigiNotar

Who got MitM'd:

- at least 300.000 unique IPs
- > 99% from Iran
- identified using OCSP requests
- others: Tor, VPN, proxies ...

credit: Martin Schmiedecker


Logged OCSP requests for fraudulent certs

the word is 'delegation'---we've seen it before

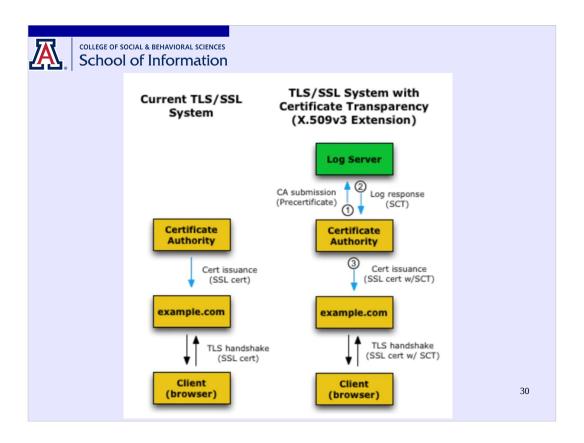
Superfish and the trouble with certs

Much more is wrong:

20

https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl

Certificate Transparency


- Makes issuance of TLS/SSL certificates publicly auditable
 - cryptographically assured
 - append-only (no deletion, modification, or retroactive insertions)
 - public: log servers advertise their URL and public key
- not about whether the certificate is valid/revoked!
- · Open source, anyone can run a log server
- Now mandatory for chrome, firefox

29

It would be GREAT if CAs made public all certs that they issued. Unfortunately, sometimes CAs have historically done under-the-table stuff, like sell certs to state actors or businesses that want to MiTM traffic, and they don't want this to be known. Also, sometimes CA's are compromised (see: DigiNotar)

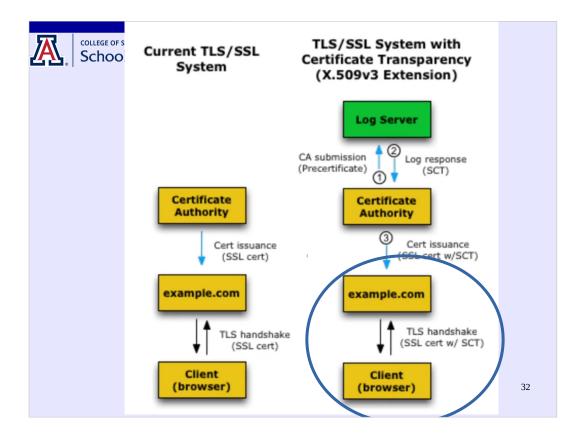
So better we should introduce some technology to ensure transparency: that's RFC 6962. Helps to detect misbehaving CAs and identify fraudulent certs.

This has caught Symantec, WoSign, CNNIC cheating, so now they have to run CT (forced by Google)

the CA issues a cert and the website installs it in the right place, so that the clients can check it

with CT, nothing different for the client.
The CA now not only issues the cert, but first sends a precert to the log server, which returns it with an SCT. The SCT is included in the certificate that is shipped to the client.

Signed Certificate Timestamp


3.2. Structure of the Signed Certificate Timestamp

```
enum { certificate_timestamp(0), tree_hash(1), (255) }
  SignatureType;
                                    · subject of the certificate's name
enum { v1(0), (255) }
                                    • issuer's name
  Version;
                                    · public key of the subject
  struct {

    validity period

      opaque key_id[32];
                                    · version number and a serial number
  } LogID;
opaque TBSCertificate<1..2^24-1>;>
  struct {
    opaque issuer_key_hash[32];
    TBSCertificate tbs_certificate;
  } PreCert;
  opaque CtExtensions<0..2^16-1>;
```

RFC 5280 https://tools.ietf.org/html/rfc5280#section-4.1.2

let's look at the client-side for a second

Verification of an SCT is part of the TLS handshake

 An extension to the Online Certificate Status Protocol (OCSP) Stapling TLS protocol

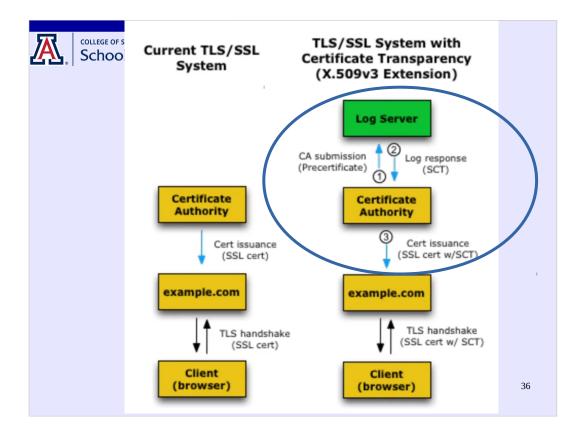
```
$openssl s_client -connect sidiprojects.us:443 \
-tls1 -tlsextdebug -status
```

```
OCSP Response Data:

OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response
Version: 1 (0x0)
Responder Id: C = US, 0 = Let's Encrypt, CN = Let's Encrypt Authority X3
Produced At: Nov 18 19:20:00 2017 GMT
Responses:
Certificate ID:
Hash Algorithm: shal
Issuer Name Hash: 7EE66AE7729AB3FCF8A220646C16A12D6071085D
Issuer Key Hash: A84A6A63047DDDBAE6D139B7A64565EFF3A8ECA1
Serial Number: 0302CD2CAD56657A5F8E57DA8E5F0C1430A1
Cert Status: good
This Update: Nov 18 19:00:00 2017 GMT
Next Update: Nov 25 19:00:00 2017 GMT
```

33

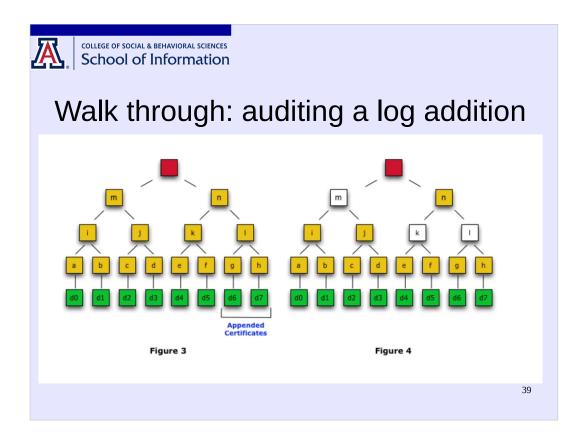
the ocsp response is combined with the certificate and sent to the client


ocsp is used to check other aspects of cert validity; CT is an extension

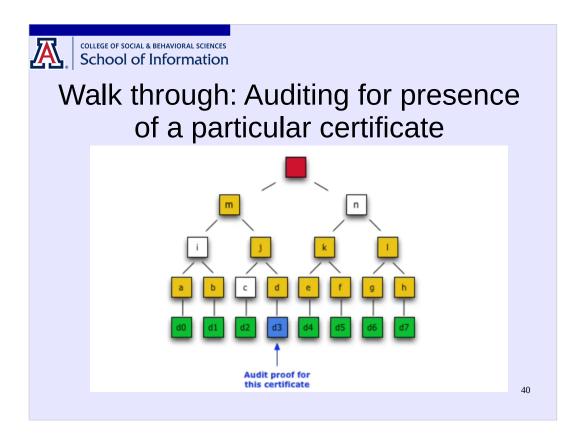
OCSP stapling is better than the alternatives

- There are other ways for the client to verify the SCT in the TLS handshake (x509v3 certificate extensions, or TLS extensions)
- OCSP stapling does not require going out to the CA
 - the OCSP request, signed by the CA, is combined with the certificate and sent to the client
 - SCT can be included as part of this stapling
- Why might contacting the CA be a negative thing?

now let's look at the CA and log server side


Nothing is deleted, ever

Still MTs are efficient, and prevent retroactive additions, removals


Batches are integrated periodically, and the global MT is recalculated, and the tree head signed

Idea is to prevent a cert from being offered for a domain without the domain owner knowing about it

validate that d6 and d7 have been added in the tree correctly---notice the problem when you go from one tree to another with an addition. It's not enough to just calculate the root hash. (why not?) So in addition, send the nodes highlighted. Still not too many; this is efficient.

not just overall consistency of the log, but that a particular certificate is present. The SCT gives the promise to add the certificate, this proves that the certificate made it in.

Log servers are still centralized in practice

- In theory, anyone can run a log
- · In practice, there are only a few
 - Digicert: the first
 - Google: their idea; they run the big ones

```
$curl ct.googleapis.com/icarus/ct/v1/get-sth
{"tree_size":148531007,
"timestamp":1511196824947,
"sha256_root_hash":"bRmJZDeJZIs/WTOYZ3pA+MyJuOEZ9m+XGZIRU9fnViI=
",
"tree_head_signature":"BAMASDBGAiEAk+md3GDvKIPyuQ27UnLdDhKoVB5hn
zVDA8ZX1Dkx/JgCIQCDmYMAi6oqpAXk+LV/vIKwfrhyaCNrX17N37moFv/BfA=="]
```

 Use crt.sh to search manually from the browser. Certspotter can help you monitor your domains (https://sslmate.com/certspotter/)

Cert Spotter has discovered the following certificates for domain(s) on your watch list:

Issuer: C=US, O=Let's Encrypt, CN=Let's Encrypt Authority X3
DNS Name: sidiprojects.us
DNS Name: www.sidiprojects.us
Fingerprint:
09354b0d8b549e5ec5eaffelf4fe740b9b9be946603d6df95ec150500ab3710f

Other ways to fix TLS

- Using GPG, with monkeysphere
 - http://web.monkeysphere.info/
- Flexible trust model of WoT used for PKI
- Problem: goes out to the keyserver for failing requests